ON A CENERALIZATION OF NEWTON-KANTOROVITCH METHOD

Abstract

It is considered the iterativ method (2), where $P:\Omega\to Y$ is a non — linear operator, $X,\ Y,$ are Banach spaces, Ω is an open subset of $X,\ M:\Omega_0\to L(Y,\ X),\ \Omega_0$ is the closing of an open subset of $\Omega,\ L(Y,\ X)$ is the space of linear bounded operators which transforms Y into X and $\{\lambda_n\}$ is a real numbers sequence

$$0 < \lambda_n \le 1$$
, $\lambda_0 \ge \lambda_1 \ge \lambda_n \ge ...$, in $\Gamma \lambda_n = \lambda \ge 0$.

If $\lambda_n = 1$, n = 0, 1, 2, ..., (2) gives the Newton -Like methods which was considered in [2] and [1].

If $\lambda_n = 1$, n = 0, 1, 2, ... and $M(x_n) = [P'(x_n)]^{-1}$ is the inverse of the derivative in Fréchet's sense of P(x), (2) gives the well known Newton-Kantorovitch's method which was considered in [3], [4].

The paper gives the sufficient conditions for the convergence of the method (2) towards the solution of the equation (1).