OH THE SOLVING OF OPERATIONAL EQUATIONS DEPENDING ON A PARAMETER

Our purpose in this paper is to solve the equation

(1)
$$P(s, \mu) = 0$$

by interative methods

$$x_{n+1} = x_n - \Gamma_{\mu}^n P(x_n, \mu)$$

$$x_{n+1} = x_n - \Gamma_{\mu}^0 P(x_{\mu}, \mu)$$

where

$$\Gamma_{\mu}^{n} = [P'(x_{n}, \mu)]^{-1}$$

without using the majorant principle.

The operator $P(x, \mu)$ is defined in the product space $X \times M$ and has its values in X, where X is a Banach space and M is normed linear space. We suppose that $P(x, \mu)$ is continuous in x, admits Fréchet derivatives until the second order, $P'(x, \mu)$, $P''(x, \mu)$ in ∂

x and also partial Fréchet derivatives $\frac{\partial}{\partial \mu} P(x, \mu)$, $\frac{\partial}{\partial \mu} P'(x, \mu)$, $\frac{\partial}{\partial \mu} P''(x, \mu)$.

The paper contains several theorems concerning the existence of the solution $x^*(\mu) = \lim x_*(\mu)$ of the equation (1), where the sequence $x_*(\mu)$ is obtained by the above-mentioned methods. We give also theorems on unicity of the solution and some remarks.