P

Buletinul Stiintific al Universitatii Baia Mare
Seria B. H&tematici—lnfurmatici,VQI,vIIItIQQE},?T—E?

ON PARALLEL EXECUTION IN LOOP EXIT SCHEMES

Tuliy Sorin POP

Abstract. This paper presents a mechanism which provides a
possibility to contrel the parallel execution in Loop Exit
Schemes (LES).

0. Introduction

Beside detecting the statements which can be executed in
parallel, a natural demand of parallel execution is representad
by the automatic specifying of these statements during the
execution. Referring to the facilities offered by the automatic
processing, LES were choosen as a model of program schemes .

1. Definitions

Let M = A u T be a terminal alphabet, where A iz the set of
agsgignment marks and T is the set of test marks. Let:

{ #+. =, NULL, IF. THEN, ELSE. ENDIF. LOOP, ENDLOOP, EXIT }
be a set of reserved words and let LM = {1.2,...} be a =at of
loop—mark symbols.

Dafinition 1. A Loop Exit Free Scheme (LEFS. see [1]) over M
ig recursively defined as follows:

a} "NULL" is a LEFS: for each aeh. "a" is a LEFS:

b) if teT, o and B are LEFS and i, j. kelLM. then:

bl) "aB"

b2) "IF t THEN alEXIT:] [ELSE B[EXIT;) |ENDIF",
where [w] means that w is optional

b3} "LOOPy aENDLOOP,. "

are LEFS;

c) Each LEFS is obtained from the rules a) and b) and
satiefies:

cl) each two LOOPs must have two diestinct loop-mark

Simbols;
cd) for each "LOOP,, oENDLOOP.." there iz at least an
EXIT;,. in a:

€3) if "LOOP,, aENDLOOP." is a LEFS then a = a'EXIT.a"
and EXITx appears only in a.
Definition 2: A Loop Exit Schemes (LES, =ee [1]) is a LEFS
which satisfies:
€3'} for each EXITw there is "LOOPyaENDLOOP." in the
LEFS such that a = a'EXITea"
Definition 3: Let a be a LEFS. The skeleton word S(a)
agsociated to a is defined by:
a) if a = ¢ then S(a) = e:
b) if ay and as are two LEFSs then
bl) if a = giaas and agA, then Sia) = Si{a,)aS{as=):
b2) if a = auNULLaz: then S(a) = S{as)8(az):
b3) if a = al IF PENDIF az., then S(a)=S(ai)IS8(aa):
b4) if a = a, LOOP, BENDLOOP,az then
Sla) = S(ai)leS(az).
Definition 4: Let xioxafyafy, be a LEFS, where (xy. Vi) can

{IF t THEN, ENDIF), or

(IF t THEN y ELSE. ENDIF). or

(LOOPw. ENDLOOP:) .

The direct word from =3 to xz, denoted by Dix,axz). is

recursively definad as fol lows:

a) 11 a is a LEFS then:
al}) if x3 = IF t THEN then Dixyoxz) = a + S{a):
a2) if x, = IF £t THEN y ELSE then Dixjoxa) = a-S{a):
ald) if x3 = LOOP. then Dix,axg) = Sla)

b) otherwise:
bl) if @ = ay, IFy u THEN,®s and &=4-ENDIF,&, then
Dixsanz) = Dix, o, IF,) DIIF amn=z), whare the symbol i

was used to distinguish different "IF - ENDIF" structures;

b2) 1f @ = @, IFy u THEN,yELSE ,xs and
& = SgENDIF 8; then Dixyaxz) = Dixyoy IF) D{IF szl
b3} if a = gl 00P.azENDLOOP.&, then
Didyonz) = Dixyory LODPL)BuDILOOPwaax=) .

Definition S5: Let 8 be a LES. The language Li(8) associated
to B is generated by the following context free grammar i
G(B) = ({WM u (I,,i200ufleu,Bu,k20}, Mul+, -3, P, v,
where "V is a new symbol, I, is a nonterminal for "IFy =ENDIF ,",
if this structure exists, L. and B. are two nonterminals for
“LOOF, -~ ENDLODP." if this structure exists, and the set P of the
productions Is constructed by the following rules:
a) ¥V - 8w}
(=] for. sach "IF; t THEN; oEMNDIF," we consider the
productions:
bi) 1, =b -
b2) Iy =b + Blw), If no EXIT. existe such that
x = a"EXITwe
c) ¥or each IF, t THEM, oELSE; B ENDIF, we consider the
product ions:
cl) 1s = b + Bila), if a # a’EXIT,
c2} Iy = b - BI(R), iF B # BEXIT.
dl For each "LDOP, a;a=4 ENDLOOP." we coneider the
productions:
dl) Li = Slesdzd) Ly and
Bu = Sloio=f) Be
02) Le = DILODPLo; IF,0E + s8{g), 1i+F
ax = IF,t THEN, BEXIT.ENDIF,, or
oz = IF,t THEN, BEXIT. ELSE, yENDIF ,
d3) L = DILDOPLa,IF 0t — SIRY, iF
= = IF,t THEN, y ELSE, B EXITw ENDIF,.
Dafinition &: Let B be a LEF. The static word associated to
& is obtained from § by erasing all reserved symbols.
Definition 7: A word z = a,1¥31819X13.+«-31ma¥1m; Where
Myy € {+, -, &}, i5 a section for 8 if there is wE€ LI(8) such that

.

al! wW = xHyz;

b) iy € 14341 for j = 1,813

c) 1f x » & then ¥ "aieMic, wWith is>i,

d¥ if v # £ then ¥ = A esi¥", With io>1ae,
The set of all sections is denoted by SEC(8). Intuitively, a
section is a masximal sequence of statements of S such that their
order of ewecution is the same with their order in the text of

the program (static word).

ED

Definition Bt A word z = a;3...3,s € M is a sequence of
assignments with final test (AFTE) if there is welL(B) such that:

Veo"oa, 182 ..9:12%1aF = w,
and one of the following conditions is verified:

8) @i14+ev98im—1 € A, 3. €T {and certainly x,. € {+, -},

® = B OF @ = X @ayNy whare a, € T, x,; E{+, =} and

B E (MUMMI,L,B,+,-3)",

(this is the case when the sequence effectively ends with a
test);

B) 8424022, 81m €A, Hyw = B, B=2, =g or a=a’ayx,, whare

a4y €T and u, € {(+, -} (this is the case when the seguence
rapresents the last part of the program, the assignments
preceeding the STOFP statement).

Cl} @118 1zvccd1m = Basesdln = W (Lthis is the trivial case when
there is mrno test in the program, which is a seaguence of
assignments}

By AFTI(8) we denote the set of seguences of assignements
with final test associated to the scheme 5.

In C13,023,03],04) are shown some properties of S schemes
and of the assocliated grammars. Algorithmic posslbilities for
determining the sets AFTIS}) and BECI(E) are also presented there.
Inm [4] are indicated some possibilities Ffor automatic detection
of the statements which can be sxecuted in parallel. They are
based on the AFT sequences and on tha program schama concept
agreging with B.Grelbach [3]).

Let wus consider the following example of LEE scheme:

g

EF

LOOF 4

IF a= THEN EXIT,: ENDIF
2.
A
ENDLOOP
He
We havear: LIS) = a3zl — Aadm!%az + G,
AFTIS) ={ajagds,dadsdz,dal.

An example of an adeguate program scheme is:
ir= 13
k= 1;

LOOP ,
IF 1 2 3 THEM EXIT; ENDIF
ki= 1| ¥ k
iz= i + 13
ENDLOOP 5
ir= kj
2. Tha Mechaniasms [deea
For automatic specifying of the statements which can be
executed in parallel in a LES scheme we shall consider a couple
{M,8) isee [F]) where M s a finite automaton and 8 is a set of
gueuas., Each gueue contains a word formed over
E = Es U Eg; whare:

Ey = {a* /f a €M (the beginning symbols associated to the
statemants of the LES).
Fe = {a=/ a €M} wu {(a=} (the set of ending symbols

associated to the statements of the LES, «" beirg an extra symbol
used to initiate the mechaniam).

The automatons alphabet is {+, -},

The behavior of this mechanism follows the following rules.

(1’ A control state g is composed From a state of the
automaton M and the content of tha guaues;

i£). A statement a is said to be “enabled” in a state g iff
there is any queus contaiming the symbol a* and for each gueus F
which contains the symbol at* there is a word * € (Ex{a'})*® and a
symbol b* €& L. such that xb™a® is a prefix of the content of Fj

(3., The execution of the statement a has as effect the
replaceament of the first occurrence of a* (if it exists) by a= in
every gusue F;

4. Any transition of the automaton produces the appending
of some words to the end of the gQuaues.

Tha gueuss spacify the relationships existing beatwean the
statements of the LES.

3. The Value Transmission Based Parallelism

This parallelism is based on the value transmission between
statements, the relation "Beg" being generated.

Definition 9. If ®x € L{(8) is a computation of a LES and
d,0 E M two statements, we say there is a value transmission from
the n*" occurrence of the symbol a to the p®*™ occurence of the

symbol B inm x 1FF2

M

= the n*"™ pgccurrence of a precedes the p*"™ occcurrence of b;

- a variabile m is an output of the statement a and an 1input
of the statement bj

= there is mo other assignment of m between these two
occurrences of a and b.

We denote this situwation with {a,n,b,p) € Begi=z,m).

Bimilary the "segment of a wariabile" concept is defined in
[7]1 and [8].

Definition 10. Two seguences = and v are saied to be (Beg)
equivalent ifFf:

- for every statement a,EiEfal,x) = EiE{al,v), where Eila}
means {a} if a € A, {a+;a-} If a €T and EfA,z! with A g E
denotes the word obtaimed from z by erasing the symbols which do
not belong to A.

- for aveary wvariable m, Begli=z,m} = Gagly,ml

Motice that Logrippo ([7]),0[B]) has demonstrated that a
maximal parallelism may be reached by retaining +rom the
geggquantial program, seguentiality only between occurrences of
statamants linked by relation Begix) = wiBegix,m}/m - variable}
{therefore the statements betwaen which exists a wvalue
transmission).

For the program scheme presented above we have:

* 7
statement numbar 1 2 3 4 = &
input variables & @ i ik i k
poutput wvariables i k & k i i

4., The Mechanism Construction
i§) The gueue set consists of the union of the sets I(al,
wharea a € M, Ifa) is the set of the gueues associated to the
statement a and is defined by:
{Fa,m/m € Di(a)) if Dia) =»B
I{a) =
{(Fa,0},i+ Dia) = @
iDia) denotes the set of input variables of the statement al.
{M} Corresponding to each test statement of the LES we
consider a state of the automaton and to this set of states we

add a final state.

— HJ —ra

Between two states g, and Oz which are not final we consider
the exietence of a tramnsition for every appearance in distinct
circumstances (see lowerdown! the following situation:

- Let a, and azx be the test statements corresponding to q.
and g=z=. There is a word w 1in the language associated to the LES
such that this one contains a subsequence y bounded at left by a,
and at right by az, and neither a; nor az do appear in v.

Between an unfinal state gi and the final onE wWE considar
the existence of a transition for ewvery appearance in distinct
clrocumstances (see lowerdown) of the following situation.

- Let a be the test statement which generated the state g..
Theara is a word w in the language assoclated to the LES such that
ite guffFix iz made of a segquence ay, where a does not appear in
W

Definition 11: The sequence v is called the link sequeance
associated to the transition while yaz is named the enriched 1ink
sequence assocliated to the tramzition.

We notice that in case of a tramsition to the final state ,
the statement ax from the definition above is a wold statement,
so the link sequence associated to the tranmsition is identical
with the enriched one.

FRefering to the definition B8 +the Ffollowing property I&
clear:

Property 1: Every ernriched lIink sequence 1s an lement of
the AFT set.

Through the appearance 1n distinct circumstances of the
previoua situation we may understand the uniguenass of the
I - tuple (a;, az, ¥!s.

- every transition will be marked with " <+ " pr % = ¥
according to the ending mode of the test statement a, which leads
us to the statement az through the link seguence v.

Remark. We notice that transitions are made only from states
corresponding to test statements. Also, agreeing with the
particular structure of the language associated to a LEE, i+ a
LES contains test statements then there always a&xists an unigue
symbol a. € T such that it appears in every word of the language,
and the first appearance of this symbol preceding all the other
possible appearences of an test simbol (the prefix bounded by aw

in every word of the language being also a constant AFT

— B4 —

saquence). This symbol will generate the initial state of the
automaton. I[If the LES doesn’t contain any test simbol, the
associated language contains only a single word w. In this case
the automaton contains onlvy a s8ingle state, which is8 final and
also initial.

Definition 12. I¥f Fa.» € Iia}) we denote by Ogi(Fa.m) the
following set:

{al, i+ Dia) =@land m=Q)
Og lFa. =} = ib € M/m € Ribl}, i a € A and Dia)ed
{aluib € W/m € Rib!}, if a € T and Dia)#d
(R ta) denotes the set of output wvariables of the statement a).

We notice that this set holds the sets of statements which
have an output variable which is input wariable of a, with the
following remarks:

= The first situation appears i+ one statement does not use
any value produced by other statements. In this case, for its
reaxecution, this statement must only wait +or the ending of the
process of value storing in the variables affected by itsael¥f.

= The last situation corrFesponding to a test statement, case
in which that test must not be preceeded by the statements from
the block controlled by itself, including its reeaxecution.

Mow we shall deflne the appending operations:

- & transition between a state g, and gz appends to any
queng Fa,m a2 word x €i{b*/b & Oxifa,mi})® which corresponds
mxactly to the sequence of symbols belonging to 0Opi(Fa, m!
appearing in the enwiched link seguence associated to this
transition.

- The gueues are ilnitialized with the simbol «*, followed by
the result of an appending operation defined analogous throuagh
considerring of a transition from a virtual state, corresponding
to the moment which precedes the execution, to the initial state.
Agreeing with the remark above, the AFT sequence, which may be
agsocliated as an enriched link seguence to this transition, is
always the same.

- Bny transition i{therfore anyv appending operation) is
performed only after the execution of the test statement which
generated the state from which the tramsition is made.

Feamark. In order to simplify, we consider in this model that

gach operator 1s instantaneously exacuted. A solution Ffor

— B5 —

avoiding this restriction is given in [F]1 and consists in
decomposing each operator into a beglinning operator and an ending
ong having in common a variable which is an output of the former
and an input of the latter.

The walue tranamision (and also maintaining the Seg-
relations in the LES) can be done through allocating of an
additional memory zone for esach variable, thess zomes being able
to keep the wvalue of the corresponding variable. For avary
wvariable, the initial memory zone 18 used only For reading and
the second additional zome is used for writing. The parallelism
model accepted here allows simultaneous veadings from a memory
zone and a single writing. The walue storead in the additional
zormne 1is copied into the initial zone only after ending of all
statemants which were simultansously launced in execution.

For the presented sxample, keeping the notations we get:

[f{a,) = (Fa,,0}

Ifias) = {Fas,0}
I{aas) = {Faa,i3 Faa,k}

Iilag) = (Fag,i}

[flag) = {(Fag.kl

and correspondingly the followings:

OpiFa,,0Fr = {a;}

OpiFaz,0) = {agz)

OpitFa=z,1) = {a,, 3=, 9m, Salt

DpiFaazl) = {a;; as; as}

OpiFaa, k) = {(a=z, aa?}

OpiFam,i) = {a,, am, al

Op(Fas,k) = {a=, aal

Therefore the finite automaton obtained isz

() "azaz"la=l] (a=} " " [asal

S el C
(az) "asam"” [aaxl

Where: (al denotes the statement which generates tha state
from which a transition is made.

[al] denotes the statement which generates the destinmation
state of the tramsition.

"u" denotes the link seguence associated to the tramsition.

The appending operations are:

QLE e Fa,,O Faz,0 Fax,l Faa,i Fas,k | Fam,1 | Faa,k
initial ja=a,* =gt a=aytast fo=a,t a"azt | a™a,t | avam?
Oi=2*0a Amtazt amt = P Amt Aat
Qi *Q= At aat Ayt

In 'ihit case, Lha precaaﬂnce grapﬁ o the parallel

exgcutable statemants is:

@ @““w@
I

o

REFEREMCES

1. BOIAN, F.M.: '"Loop - Exit Bchemes and Grammars: Properties
Flowchartablies"”, Studia Univer=sitatis Babes-Bolval, Mathematica
31{198&), no 3.

2. BOIAM, F.HM.: "Revarsible execution with Loop Exit schemas",
Studia Universitatis, Babeg-Bolyvai, Mathematica 32(1987), no 3.

<. BOIAN, F.M.: "Reducing the Loop Exit Schemes", Mathematica,
Cluj=Napoca, 2Bi19B&), no 1.

4, BOIAN, F.M., FRENTIU, M., KA&SA, Z.: "Parallel execution in
Loop Exit schames", Babeg-Bolval University, Seminar on Computer
Sclence, Preprint no 9, 1988.

5. GREIBACH, B.: "“Theaory of program structures: schemes,
semantics, verifications”, {(Lecture notes in computer science),
Springer VYerlag, 1975.

&. KELLER, R.M.:*"Parallel program schemata and maximal
parallelism®, Journal ACM, 20{1973), no 3-4.

7. LOGRIPPO, L.: "Renamings and Economy of Memory in Program
Schemata", Journal ACM, 25(1978), no 1.

B. LOGRIPPD, L.: "Henamings, Maximal Parallelism and Bpace - Time
Tradeoff in Program Schemata®, Journal ACM, 2&4(1979), no 4.

F. ROUCARIOL, G.: "Transformation of sequential programs into
parallel programs", 1n Parallel Processing Systems-Advanced
Course", D.J. Evans (ed), Cambridge Univ.Press, 1982.

University "Babeg Bolyai" Cluj-Napoca
Faculty of Mathematics
str. M. Kogdlniceanu nr.1
3400 CLUJ-NAPOCA
ROMAN 1A

