Buletinul Științific al Universității din Baia Mare Seria B, Matematică-Informatică, vol.IX(1993), 25-32

## ON SOME MEAN VALUE THEOREMS FOR REAL FUNCTIONS OF VECTORIAL VARIABLE

Maria S. POP and Ioana GORDUZA

In this paper we consider a number of generalizations in  $\mathbb{R}^{n}$  of the classical mean value theorems for real-valued functions of one real variable and some of their consequences with geometric interpretation.

Throughout this paper D;  $D\subseteq \mathbb{R}^n$  denotes a conex domain,  $\langle , \rangle$  the canonic scalar product of two vectors from  $\mathbb{R}^n$ , | | the euclidean norm in  $\mathbb{R}^n$  and for  $a,b\in \mathbb{R}^n$ ,  $[a,b]=\{x\in \mathbb{R}^n;\ x=a+t(b-a);\ t\in [0,1]\}$ .

THEOREM 1 Let  $f,g: D \to \mathbb{R}$  be continuous functions on [a,b];  $a,b\in D$  such that the gradients  $\nabla f$  and  $\nabla g$  exists for all  $x\in ]a,b[$ . Then there is at least one  $c\in ]a,b[$  such that

$$((f(b)-f(a))\nabla g(c) - (g(b)-g(a))\nabla f(c), b-a) = 0$$
 (1)

PROOF. We consider the function F:  $[0,1] \rightarrow \mathbb{R}$  given by  $F(t) = (f(b)-f(a))((g\circ x)(t)-g(a)) - (g(b)-g(a))((f\circ x)(t)-f(a))$  where  $x: [0,1] \rightarrow [a,b]; x(t) = a+t(b-a)$ .

Obviously F(0)=F(1)=0, F is a continuous function on [0,1] and F'(t) exists for all  $t\in ]0,1[$ , hence there is at least one  $\zeta\in ]0,1[$  for which  $F'(\zeta)=0$ . According to the rule of the composed functions derivation we have

 $F'(\zeta) = (f(b)-f(a))\langle \nabla g(c), b-a\rangle - (g(b)-g(a)) \langle \nabla f(c), b-a\rangle = 0$  where c=a + $\zeta$ (b-a), and this gives the result (1).

COROLLARY 1 (The generalization of Cauchy's mean value theorem). Let  $f,g: D \to \mathbb{R}$  be continuous functions on [a,b],  $a,b\in D$  such that  $\nabla f$ ,  $\nabla g$  exist for each  $x\in ]a,b[$  and  $\langle \nabla g(x),b-a\rangle \neq 0$ . Then  $g(a)\neq g(b)$  and there is at least one  $c\in ]a,b[$  such that

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{\langle \nabla f(c), b-a \rangle}{\langle \nabla g(c), b-a \rangle}$$
(2)

This follows from the theorem 1 and Rolle's theorem applied to the function G:  $[0,1] \rightarrow \mathbb{R}$ ; G=g $\diamond$ x where x:  $[0,1] \rightarrow [a,b]$ ; x(t)=a+t(b-a). Indeed, g(a)=g(b), therefore G(0)=G(1) implies that  $\exists \zeta \in ]0,1[$ ;  $G'(\zeta)=0$  and that contradicts the hypothesis  $\langle \nabla g(x), b-a \rangle \neq 0 \ \forall x \in ]a,b[$ .

COROLLARY 2 (Lagrange's mean value theorem). Let  $f: D \to \mathbb{R}$  be a continuous function on  $[a,b] \subseteq D$  such that for each  $x \in ]a,b[$ ,  $\nabla f(x)$  exists.

Then there is at least one cela,b[ such that

$$f(b)-f(a) = \langle \nabla f(c), b-a \rangle$$
 (3)

This follows from the corollary 1 for  $g(x)=\langle x,b-a\rangle$ , because  $\nabla g=b-a$  and  $g(b)-g(a)=\|b-a\|^2$ .

Remarks 1. The results of theorem 1 do not implie  $(f(b)-f(a))\, \nabla g(c) \,=\, (g(b)-g(a))\, \nabla f(c) \ .$ 

For example if  $f,g:\mathbb{R}^2\to\mathbb{R}$ ;  $f(x_1,x_2)=x_1+2x_2$ ;  $g(x_1,x_2)=x_1-x_2$  then  $(g(b)-g(a))\nabla f(x)\neq (f(b)-f(a))\nabla g(x) \text{ for all } x\in\mathbb{R}^2 \text{ if } a\neq b;$ 

2. The relation (1) can be written

$$(f(b)-f(a))\delta(f(c),b-a) = (g(b)-g(a))\delta(g(c),b-a)$$
 (1')

where  $\delta(h(c),b-a)$  denotes the directional derivative of f at c on the direction from a through b.

The geometrical interpretation of Corollary 2:

The continuous function  $\psi$ :  $[0,1] \rightarrow DxR$  defined by

 $t \longrightarrow (a+t(b-a), f(a+t(b-a))$  can be regarded as a (simple) path in  $Dx\mathbb{R}([1])$ . Because  $\psi'(t)$  exists and  $\psi'(t)=(b-a, \langle \nabla f(x(t)), b-a \rangle) \neq 0$ 

for each te]0,1[, the path  $\psi$  has a tangent at each point other than endpoints  $A = \psi(0) = (a, f(a)); B = \psi(1) = (b, f(b))$ , with direction

$$\frac{\psi'(t)}{\|\psi'(t)\|}$$
 . Corollary 2 asserts that there is at least one

intermediate point (c,f(c)) of the path  $\psi$  at which the direction of the tangent is the same as that of the chord AB, or, equivalently, there is at least one point of the graph of f at which the normal  $(\nabla f(c),-1)$  to this is orthogonal with the chord AB.

THEOREM 2 Let  $f: D \to \mathbb{R}$  be a continuous function on  $[a,b] \subset D$ , such that the gradient  $\nabla f$  exists for all  $x \in ]a,b[$ . Then for each d=a+t(b-a);  $t \in \mathbb{R} \setminus [0,1]$ , there is  $c \in ]a,b[$  such that

$$\frac{\langle af(b) - bf(a) - d(f(b) - f(a)), b - a \rangle}{\|b - a\|^2} = \langle \nabla f(c), c - d \rangle - f(c)$$
(4)

PROOF. The functions f\*,g: [a,b] - R

$$f^*(x) = \frac{f(x)}{\langle x-d,b-a\rangle}$$
;  $g(x) = \frac{1}{\langle x-d,b-a\rangle}$  are continuous on [a,b] and

differentiable on ]a,b[. Because  $\nabla g(x) = -\frac{b-a}{\langle x-d,b-a\rangle^2} \neq 0$ , by

corollary 1 there is at least one c∈]a,b[ such that

$$\frac{\langle a-d,b-a\rangle f(b) - \langle b-d,b-a\rangle f(a)}{\langle a-d,b-a\rangle - \langle b-d,b-a\rangle} = -\frac{\langle \nabla f(c)\langle c-d,b-a\rangle - \langle b-a\rangle f(c),b-a\rangle}{\|b-a\|^2} \ .$$

By the properties of the scalar product and the colinearity of c-d and b-a we have:

$$\langle \nabla f(c), b-a \rangle \langle c-d, b-a \rangle = \langle \nabla f(c), c-d \rangle \|b-a\|^2$$

and therefore this gives (4).

Remark: In particular, the case n = 1 gives the Rotaru's theorem [5].

The geometrical interpretation. The theorem 2 asserts that there is at least one intermediate point (c,f(c)),  $c\in ]a,b[$ , so that the straight line  $(\nabla)$  in  $\mathbb{R}^{n+1}$  which focuses the points A=(a,f(a)), B=(b,f(b)) of the graph of f, the straight line "verticale", x=d, d=a+t(b-a);  $t\in \mathbb{R}\setminus [0,1]$  and the tangent hyperplane at (c,f(c)) at the

graph of f are concurrent.

COROLLARY (The generalization of Pompeiu's theorem [3]). Let  $f: D \to \mathbb{R}$  be a continuous function  $a,b \in D$  such that  $b=\lambda a$ ,  $\lambda > 0$  and  $\nabla f$  exists for each  $x \in Ja,b[$ .

Then there is at least one  $c \in ]a,b[$  such that

$$\frac{\langle af(b)-bf(a),b-a\rangle}{\|b-a\|^2} = \langle \nabla f(c),c\rangle - f(c)$$
 (5)

THEOREM 3 Let  $f: D \to \mathbb{R}$  be a continuous function on  $\{a,b\} \subset D$ , differentiable at  $\{a,b\}$  and such that  $\langle \nabla f(x),b-a\rangle \neq 0$ ,  $\forall x \in ]a,b[$  (that implie  $f(a) \neq f(b)$ ). For each  $\mu \in \mathbb{R} \setminus \mathrm{Imf}_{\{a,b\}}$ ;  $\mathrm{Imf}_{\{a,b\}} = \{f(x)/x \in [a,b]\}$  there is  $c \in ]a,b[$  such that

$$\frac{\langle af(b)-bf(a),b-a\rangle}{\langle f(b)-f(a)\rangle} + \frac{\mu}{f(b)-f(a)} = \frac{\langle c,b-a\rangle}{\|b-a\|^2} - \frac{f(c)-\mu}{\langle \nabla f(c),b-a\rangle}$$
(6)

PROOF. The functions  $f^*,g:[a,b] \rightarrow R$ ;

 $f^*(x) = \frac{\langle x, b-a \rangle}{f(x) - \mu}; \ g(x) = \frac{1}{f(x) - \mu} \text{ are continuous on [a,b] and } \nabla f^*,$ 

 $\nabla g$  exist for each  $x \in ]a,b[$ .

Because  $\langle \nabla g(x), b-a \rangle = -\frac{\langle \nabla f(x), b-a \rangle}{(f(x)-\mu)^2} \neq 0$ , by Corollary 1 of Theorem 1 we have (6).

COROLLARY Let  $f: D \to \mathbb{R}$  be a continuous function on  $[a,b] \subset D$  such that  $f(x) \neq 0 \ \forall x \in [a,b]$  and  $\nabla f(x)$  exist  $\langle \nabla f(x), b-a \rangle \neq 0, \ \forall x \in [a,b[$ . Then  $f(a) \neq f(b)$  and there is  $c \in [a,b[$  such that

$$\frac{\langle af(b)-bf(a),b-a\rangle}{f(b)-f(a)} = \langle c,b-a\rangle - \frac{f(c)}{\langle \nabla f(c),b-a\rangle} \|b-a\|^2$$
 (7)

In particular, the case n=1 gives the Ivan's theorem [3].

The geometrical interpretation of theorem 3.

The relation (6) can be written

$$\frac{\langle a-c,b-a\rangle}{\|b-a\|^2} + \frac{\mu-f(a)}{f(b)-f(a)} + \frac{f(c)-\mu}{\langle \nabla f(a),b-a\rangle} = 0 \tag{6'}$$

Because  $\langle a-c,b-a \rangle \langle \nabla f(c),b-a=\langle a-c,\nabla f(c) \rangle |b-a|^2$ , from (6') we have

$$\langle a + \frac{\mu - f(a)}{f(b) - f(a)} (b - a) - c, \nabla f(c) \rangle - (\mu - f(c)) = 0$$
 (6")

This shows that there is at least one point (c,f(c)) of the graph of f such that the tangent hyperplane in this point

$$(x-c, \nabla f(c)) - (x_{n+1}-f(c)) = 0$$
,

the straight line which focuses the points (a,f(a)), (b,f(b)) of the graph of f and the hyperplane  $x_{n+1}=\mu$  are concurrent.

In the sequel weill prove a very interesting property of the intermediar point defined by value theorem 1.

THEOREM 4 Let  $f,g: D \to \mathbb{R}$  be the functions of class  $c^2(D)$ , let  $a \in D$  such that  $\langle \nabla g(x), x-a \rangle \neq 0$  for all  $x \in D \setminus \{a\}$  and  $d^2f(a)dg(a) \neq d^2g(a)df(a)$ . By theorem 1, for all  $x \in D \setminus \{a\}$  there is at least one point  $c_x \in A$ ,  $a \in A$ ,  $a \in B$ , a

$$(f(x)-f(a))\langle \nabla g(c_x), x-a \rangle = (g(x)-g(a))\langle \nabla f(c_x), x-a \rangle$$

and

$$\lim_{x \to a} \frac{\|C_x - a\|}{\|x - a\|} = \frac{1}{2} \tag{8}$$

PROOF Let  $e=(e_1,e_2,\ldots,e_n)$  be the unit vector in  $\mathbf{R}^n$ . Because D is a convex domain in  $\mathbf{R}^n$ , for all  $x \in D$  such that x-a is collinear with e, there is the compact interval  $I \subseteq \mathbf{R}$  such that  $x=a+t_xe$ ;  $t_x \in I$ . Obviously  $c=a+t_ce$ ;  $|t_c|<|t_x|$ ;  $t_ct_x>0$ .

The function  $F: I \rightarrow \mathbb{R}; F(t) = (f(a+te)-f(a))\langle \nabla g(a), e \rangle$  -

- 
$$(g(a+te)-g(a))\langle \nabla f(a),e\rangle$$
 is of class  $C^2(I)$  and

$$F'(t) = \langle \nabla f(a+te), e \rangle \langle \nabla g(a), e \rangle - \langle \nabla g(a+te), e \rangle \langle \nabla f(a), e \rangle$$

$$F''(t) = {}^{t}EH_{f}(a+te) E \langle \nabla g(a), e \rangle - {}^{t}EH_{g}(a+te) E \langle \nabla f(a), e \rangle$$

where  $H_f(a+te)$ ;  $H_g(a+te)$  are the Hesse-matrices of f respectively g in the point a+te and  $E^{=T}(e_1,\ldots,e_n)\in\mathcal{M}_{n,1}(\mathbb{R})$ .

Because F(0)=F'(0)=0, by l'Hôspital theorem we have

$$\lim_{t\to 0} \frac{F(t)}{t^2} = \lim_{t\to 0} \frac{F'(t)}{2t} = \frac{1}{2} \lim_{t\to 0} F''(t) = \frac{1}{2} F''(0)$$
(9)

But, 
$$F(t) = (f(a+te)-f(a))(\nabla g(a)-\nabla g(c),e) +$$
  
+  $(f(a+te)-f(a))(\nabla g(c),e) - (g(a+te)-g(a))(\nabla f(a),e)$ 

and by theorem 1:

$$F(t) = (f(a+te)-f(a))\langle \nabla g(a) - \nabla g(c), e \rangle +$$

$$+ (g(a+te)-g(a))\langle \nabla f(c) - \nabla f(a), e \rangle .$$

Since

$$\begin{split} &\lim_{t\to 0} \frac{F(t)}{t^2} = \lim_{t\to 0} \frac{f(a+te)-f(a)}{t} \quad \lim_{t\to 0} \frac{\nabla g(a)-\nabla g(c)}{t}, e\rangle + \\ &+ \lim_{t\to 0} \frac{g(a+te)-g(a)}{t} \quad \lim_{t\to 0} \frac{\nabla f(c)-\nabla f(a)}{t}, e\rangle = \\ &= -\langle \nabla f(a), e\rangle \cdot \langle \lim_{t_0\to 0} \frac{\nabla g(c)-\nabla g(a)}{t_c}, e\rangle \cdot \lim_{t\to 0} \frac{t_c}{t} + \\ &+ \langle \nabla g(a), e\rangle \cdot \langle \lim_{t_0\to 0} \frac{\nabla f(c)-\nabla g(a)}{t_c}, e\rangle \cdot \lim_{t\to 0} \frac{t_c}{t} = \\ &= \lim_{t\to 0} \frac{t_c}{t} \cdot \langle ^tEH_f(a)E \cdot \langle \nabla g(a), e\rangle - \ ^tEH_g(a)E \cdot \langle \nabla f(a), e\rangle \rangle \ . \end{split}$$

As  $t_c t_x > 0$  we have  $\frac{t_c}{t_x} = \frac{\|c - a\|}{\|x - a\|}$  and therefore

$$\lim_{t\to 0} \frac{F(t)}{t^2} = \lim_{x\to a} \frac{\|C-a\|}{\|x-a\|} \cdot F''(0)$$
(10)

From (#0) and (9) and because of the hypothesis F"(0)≠0, we have

$$\lim_{t\to 0}\frac{\|c-a\|}{\|x-a\|}=\frac{1}{2} \text{ for all directions e, that is } \lim_{x\to a}\frac{\|c_x-a\|}{\|x-a\|}=\frac{1}{2} \ .$$

Remark The theorem 4 generalizes the Popa's result [4].

## ABSTRACT

In this paper, the generalization of the Cauchy's mean value theorem for real-valued function of vectorial variable in  $\mathbf{R}^n$  and some of their consequences with geometric interpretation are considered. We also prove an interesting property of the intermediar point defined in the mean value theorem 1.

## REFERENCES

- FLETT, M.F.: The definition of tangent to a curve, Edinburgh Math.Notes, 41(1957), 1-9 p.
- 2. IVAN, M.: Asupra unei teoreme de medie, Atheneum, Cluj, 1970, p. 23-25
- POMPEIU, D.: Sur un proposition analogue au theoreme de accrosements finis, Mathem. 22, 1946, p. 143-146
- 4. POPA, E.C.: O proprietate a punctului intermediar în unele teoreme de medie, Astra Matematică, vol.1, nr.4, 1990, p.3-7
- ROTARU, F.: Asupra unei teoreme de medie, G.M. nr.8/1983, p.316-318.

UNIVERSITY OF BAIA MARE
DEPARTMENT OF MATHEMATICS
4800 BAIA MARE
ROMÂNIA