Buletinul Științific al Universității din Baia Mare Seria B, Matematică-Informatică, vol.IX(1993), 73-80

ON R-n-MODULES

Lacrimioara IANCU

Summary: This paper gives some elementary results on n-modules and on the category of n-modules; two constructions of the quotient n-module are given. In R-n-modules, non-uniqueness of the representation of an element relative to a basis is remarked.

 Introduction. N. Celakoski [1] introduced the notion of R-n-module and studied some properties of projective and injective R-n-modules.

The aim of this paper is to give some results on R-n-modules, analogous to those concerning R-modules, that would allow further systematic research.

2. Let R be an associative ring with neutral element $(1\neq0)$, (A,\bullet) an abelian n-group with only one neutral element, denoted O. A is said to be an R-n-module if there is defined a mapping ϕ : RxA \rightarrow A, (r,a) \rightarrow ra such that:

$$\begin{aligned} &1a=a,\ (rs)\,a=r(sa)\,,\ r(a_1,\ldots,a_n)\,{}_{\circ}=(ra_1,\ldots,ra_n)\,{}_{\circ}\,,\\ &(\sum_{i=1}^n r_i)\,a=(r_1a,\ldots,r_na)\,{}_{\circ}\,,\ \ for\ every\ r,\ r_i\in R,\ a,\ a_i\in A,\ i=1,\ldots,n. \end{aligned}$$

It is easy to see that $0 \cdot a=0$, and $r \cdot 0=0$, for every $a \in A$, $r \in R$; we also have $(-1) \cdot a=(a,a,\ldots,a,\bar{a},0,0)$, and

$$[\underbrace{(-1)+(-1)+\ldots+(-1)}_{n-2}] \cdot a = \overline{a}$$

A subset $B \subseteq A$ is said to be an n-submodule if operation from A induce operations in B and B with these operations is an R-n-module.

Let X be a subset of A, X⊆A. A finite sum

$$x = (\ldots ((r_1 x_1, \ldots, r_n x_n), r_{n+1} x_{n+1}, \ldots, r_{2n-1} x_{2n-1}), \ldots, r_s x_s),$$
 where $s \equiv 1 \pmod{n-1}$, $r_k \in R$, $x_k \in X$, $k = 1, 2, \ldots, s$, is called a linear

combination of elements from the subset X.

The n-submodule generated by X is defined as

$$\langle x \rangle = \bigcap \{B \in \mathcal{G}_{Rm}(A) \mid x \subseteq B\}$$
 (where $\mathcal{G}_{Rm}(A)$ denotes the set of

n-submodules of A).

If X⊊A, X≠ø then

$$\langle X \rangle = \{(\dots (x_1 X_1, \dots, x_n X_n), \dots, x_s X_s), |x_k \in \mathbb{R}, X_k \in \mathbb{X}, k=1, \dots, s; s=1 \pmod{n-1}\}$$

$$\langle (x) \rangle = \langle x \rangle = \{ rx \mid r \in R \}$$

Now, one can easy prove that:

Proposition 1 a) The lattice $\mathcal{S}_{Rn}(\mathbf{A})$ of the n-submodules of \mathbf{A} is a complete lattice.

b) \mathscr{S}_{Rn} (A) is a complete sublattice of \mathscr{F}_n (A) (which is the lattice of the n-subgroups of A).

An equivalence ρ on A is said to be a <u>congruence</u> on the R-n-module A if:

$$a_1 \rho b_1, a_2 \rho b_2, \dots, a_n \rho b_n \rightarrow (a_1, a_2, \dots, a_n), \rho (b_1, b_2, \dots, b_n),$$

 $a \rho b, r \in \mathbb{R} \rightarrow (ra) \rho (rb)$

We shall denote the set of all congruences on the R-n-module A by $\mathcal{E}_{\rm Rn}({\rm A})$. ($\mathcal{E}_{\rm Rn}({\rm A})$, ${\it c}$) is a complete lattice.

Theorem 1. The mapping $f: \mathcal{S}_{Rn}(A) \to \mathcal{E}_{Rn}(A)$, $f(B) = \rho_B$ (where ρ_B is defined as follows: $\mathbf{a_1} \rho_B \mathbf{a_2} \to (\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_2}, \overline{\mathbf{a_2}}, \mathbf{0})$, $\in B$) is an isomorphism of lattices and $f^{-1}(\rho) = \rho < 0 > = \{\mathbf{a} \in A \mid 0 \rho \mathbf{a}\}$.

Proof a) We prove that ρ_B is a congruence on A. We have $(a_1,a_1,\ldots,a_1,\overline{a_1},0)_{\circ}=0\in B$; this shows that ρ_B is reflexive; $a_1\rho_Ba_2$

implies that $(a_1, a_2, \dots, a_2, \overline{a_2}, 0) \in B$ and, as B is an n-submodule, $(-1) \cdot (a_1, a_2, \dots, a_2, \overline{a_2}, 0) \in B$; but $(a_1, a_2, \overline{a_2}, 0)$, $(\overline{a_1}, \overline{a_2}, \dots, \overline{a_2}, \overline{a_2}, 0)$, (0, 0) = $(a_2, a_1, \dots, a_1, \overline{a_1}, 0)$. which proves that $a_2 \rho_B a_1$, i.e. ρ_B is symmetrical. implies that $(a_1, a_2, \dots, a_2, \overline{a_2}, 0)$, $\in B$ and a, PRa2, $a_2 \rho_B a_3$ $(a_2, a_3, \dots, a_1, \overline{a_1}, 0) \in B$; then $((a_1, a_2, \ldots, a_2, \overline{a_2}, 0), (a_2, a_3, \ldots, a_3, \overline{a_3}, 0), 0, \ldots, 0) \in B$ means $(a_1, a_3, a_3, \dots, a_3, \overline{a_3}, 0)$, $\in B$, i.e. ρ_B is transitive. If $a_1 \rho_B b_1$, $a_2 \rho_B b_2$,..., $a_n \rho_B b_n$ then $(a_1, b_1, \dots, b_1, \overline{b_1}, 0)$, $\in B$..., $(a_n, b_n, ..., b_n, \overline{b_n}, 0)$, $\in B$ and also $((a_1,b_1,\ldots,b_n,\overline{b_1},0),\ldots,(a_n,b_n,\ldots,b_n,\overline{b_n},0),\in B$, which means $((a_1, a_2, \ldots, a_n), (b_1, \ldots, b_n), \ldots, (b_1, \ldots, b_n), (\overline{b_1, \ldots, b_n}), (0), \in B$ i.e. $(a_1, a_2, \dots, a_n), \rho_B(b_1, b_2, \dots, b_n)$. If apRb and reR then $(ra, rb, ..., rb, \overline{rb}, 0)$ = $(ra, rb, ..., rb, r\overline{b}, 0)$ = $r(a, b, ..., b, \overline{b}, 0)$ $\in B$, which proves that $(ra) \rho_R(rb)$. We now know that ho_B is a congruence on A. b) We prove that f is an isomorphism of lattices.

Let $B_1, B_2 \in \mathcal{S}_{Rn}(A)$, $B_1 \neq B_2$. This means that $\exists x \in B_1 \setminus B_2$;

and (x,0,0,...,0), $\notin B_2 \hookrightarrow x p_B 0$. $x = (x, 0, 0, \dots, 0), \in B_1 \Leftrightarrow x\rho_{B_1}0,$

This proves that $\rho_{B_1} \neq \rho_{B_2}$, i.e $f(B_1) \neq f(B_2)$, and f is injective.

Let ρ be a congruence on A, $\rho \in \mathcal{B}_{Rn}(A)$, and $B = \rho < 0 > = \{a \in A \mid a \rho 0\}$. It is easy to prove that $B \in \mathcal{S}_{Rn}(A)$ and that $\rho = \rho_B$; therefore f is surjective.

If $B_1 \subseteq B_2$ and $a\rho_B b$, then $(a,b,b,\ldots,\overline{b},0) \in B_1 \subseteq B_2$; $(a,b,\ldots,b,\overline{b},0)$, $\in B_2 \Leftrightarrow a\rho_{B_2}b$. We proved that $\rho_{B_1}\subseteq \rho_{B_2}$ i.e. $f(B_1) \subseteq f(B_2)$, which completes the demonstration. This isomorphism allows us to identify $\rho \in \mathcal{E}_{Rn}(A)$ with $B = \rho < 0 > \epsilon \mathcal{F}_{Rn}(A)$, and to define $A/B = \{a+B \mid a \in A\}$, where $a+B = \{(a,b,0,\ldots,0), b \in B\}$. A/B is an R-n-module with the following operations:

$$((a_1+B), (a_2+B), \dots, (a_n+B))_{\circ} = (a_1, a_2, \dots, a_n)_{\circ} + B$$

 $r(a+B) = ra+B$

and is said to be the quotient R-n-module.

Theorem 2 The mapping $f': \mathscr{S}_{Rn}(\lambda) \to \mathscr{C}_{Rn}(\lambda)$, $f'(B) = \rho'_B$ (where ρ'_B is defined as follows $a\rho'_B c \Leftrightarrow \exists b_1, \ldots, b_{n-1} \in B$ such that $c = (a, b_1, \ldots, b_{n-1})$,) is an isomorphism of lattices and $f'^{-1}(\rho) = \rho < 0 > = \{a \in A | a\rho 0\}$.

Proof a) We prove that ρ_B' is a congruence on A. We have $a=(a,0,\ldots,0)$ and $0\in B$; this shows that ρ_B' is reflexive.

 $a_1 \rho_B' a_2$ implies that $\exists b_1, \dots, b_{n-1} \in B$ such that $a_2 = (a_1, b_1, \dots, b_{n-1})$; solving the equation we obtain

 $a_1 = (a_2, \underbrace{b_{n-1}, \ldots, b_{n-1}}_{n-3}, \overline{b_{n-1}}, \ldots, b_1, \ldots, b_1, \overline{b_1})$, and making the necessary

associations we obtain that $a_1=(a_2,b_1',\ldots,b_{n-1}')$, i.e. $a_2\rho_B'a_1$, which proves that ρ_B' is symmetrical.

 $a_1 \rho_B' a_2$, $a_2 \rho_B' a_3$ implies that $\exists b_1, \dots, b_{n-1}, c_1, \dots, c_{n-1} \in B$ such that $a_1 = (a_2, b_1, \dots, b_{n-1})$, $a_2 = (a_3, c_1, \dots, c_{n-1})$, $b_1 = (a_2, b_1, \dots, b_{n-1})$, $b_2 = (a_3, c_1, \dots, c_{n-1})$, $b_1 = (a_1, \dots, b_{n-1})$, $b_2 = (a_2, \dots, a_{n-1}, a_1)$, $b_1 = (a_2, \dots, a_{n-1}, a_1)$, $b_2 = (a_3, a_1, \dots, a_{n-1})$, $b_1 = (a_2, a_1, \dots, a_{n-1})$, where $b_1' \in B$, i.e. ρ_B' is transitive. If $a_1 \rho_B' c_1, a_2 \rho_B' c_2, \dots, a_n \rho_B' c_n$ then $\exists b_1, \dots, b_{n-1}, b_1, \dots, b_{n-1}, \dots, b_{n-1}, \dots, b_{n-1}, \dots, b_{n-1} \in B$ such that

 $a_1 = (c_1, b_1^1, \dots, b_{n-1}^1)_{\circ}$, $a_2 = (c_2, b_1^2, \dots, b_{n-1}^2)_{\circ}$, ..., $a_n = (c_n, b_1^n, \dots, b_{n-1}^n)_{\circ}$; making the operation we obtain $(a_1, a_2, \dots, a_n)_{\circ} =$

$$=((C_1,C_2,\ldots,C_n)_*,\ b_1^1,\ldots,b_{n-1}^1,b_1^2,\ldots,b_{n-1}^2,\ldots,b_1^n,\ldots,b_n^n)_*=\\ n(n-1)\ terms$$

 $= ((c_1,c_2,\ldots,c_n),b_1,b_2,\ldots,b_{n-1}), i.e. (a_1,a_2,\ldots,a_n), \rho_B'(c_1,c_2,\ldots,c_n),$ If $a\rho_B'c$ and $r\in \mathbb{R}$, then $\exists b_1,\ldots,b_{n-1}\in B$ such that $a=(c,b_1,\ldots,b_{n-1}),$ $ra=r(c,b_1,\ldots,b_{n-1}), = (rc,rb_1,\ldots,rb_{n-1}), \text{ and, as } rb_k\in \mathbb{R}, k=1,\ldots,n-1$ we proved that $(ra)\rho_B'(rc)$.

We now know that ρ_B is a congruence on A.

b) We prove that f' is an isomorphism of lattices. Let $B_1,B_2\in \mathcal{S}_{Rn}(A)$, $B_1\neq B_2$. This means that $\exists b\in B_1\setminus B_2$. Let $c=(a,b,0,\ldots,0)$, then $a\rho_{B_1}'c$. We shall prove that $\not\exists b_1,\ldots,b_{n-1}\in B_2$ such that $a=(c,b_1,\ldots,b_{n-1})$, i.e. $a\rho_{B_2}'c$. If $\exists b_1,\ldots,b_{n-1}\in B_2$ such that $a=(c,b_1,\ldots,b_{n-1})$, then $c=((c,b_1,\ldots,b_{n-1})$, $b,0,\ldots,0)$, and therefore

$$b = \underbrace{(b_{n-1}, \ldots, b_{n-1}, \overline{b_{n-1}}, \ldots, b_1, \ldots, b_1, \overline{b_1}, \overline{b_1}, \underline{c}, \ldots, c, \overline{c}, c, \underbrace{0, \ldots, 0}_{(n-2)^2})}_{n-3} = \underbrace{(b_{n-1}, \ldots, b_{n-1}, \overline{b_{n-1}}, \ldots, b_1, \overline{b_1}, \overline{b_1}, \underline{c}, \ldots, c, \overline{c}, c, \underbrace{0, \ldots, 0}_{(n-2)^2})}_{} = \underbrace{(b_{n-1}, \ldots, b_{n-1}, \overline{b_{n-1}}, \ldots, b_{n-1}, \overline{b_1}, \overline{b_1}, \overline{b_1}, \underline{c}, \ldots, c, \overline{c}, c, \underbrace{0, \ldots, 0}_{(n-2)^2})}_{}$$

= $(b_{n-1}, \ldots, b_{n-1}, \overline{b_{n-1}}, \ldots, b_1, \ldots, b_1, \overline{b_1}, 0)$, $\in B_2$, contradiction. This proves that $\rho_{B_1}^f \neq \rho_{B_2}^f$ i.e. $f'(B_1) \neq f'(B_2)$ and f is injective.

Let ρ be a congruence on A, $\rho \in \mathscr{C}_{Rn}(A)$ and $B=\rho <0>=\{a \in A/a \rho 0\}$. It is easy to prove that $B \in \mathscr{T}_{Rn}(A)$ and $\rho = \rho_B'$, therefore f' is surjective.

Now if $B_1\subseteq B_2$ and $a\rho'_{B_1}c$ then $\exists b_1,\ldots,b_{n-1}\in B_1\subseteq B_2$ such that $a=(c,b_1,\ldots,b_{n-1}), i.e. \ a\rho'_{B_1}c \text{ so } f'(B_1)\subseteq f'(B_2).$

We have proved that f' is an isomorphism of lattics and $f'^{-1}(\rho) = \rho < 0 >$.

The isomorphism defined in theorem 2 allows us to identify $\rho \in \mathcal{E}_{Rn}(A)$ with $B = \rho < 0 > \in \mathcal{F}_{Rn}(A)$; then $A/B = \{a+(n-1)B \mid a \in A\}$, where

a+(n-1)B={(a,b₁,...,b_{n-1})_o|b_i \in B, i=1,...,n-1}. A/B is an R-n-module with the following operations:

$$((a_1+(n-1)B), (a_2+(n-1)B), \dots, (a_n+(n-1)B))_s = (a_1, \dots, a_n)_s+(n-1)B$$

 $r(a+(n-1)B) = ra+(n-1)B$

This second construction of the quotient n-module brings us to the notion introduced by Celakoski in [1].

The isomorphism theorems for R-n-modules can be obtained from the isomorphism theorems for universal algebras by identifying the congruences of an n-module with its n-submodules.

3. We shall denote the category of R-n-modules by $\operatorname{Mod}_{\operatorname{Rn}}$. In this category {0} is a zero object; therefore $\operatorname{Mod}_{\operatorname{Rn}}$ is a category with zero morphisms $(\forall A, B \in \operatorname{Mod}_{\operatorname{Rn}}, O_{AB}: A \to B, O_{AB}(a) = O_B, \forall a \in A)$.

Theorem 3 The category $\operatorname{Mod}_{\operatorname{Rn}}$ is with kernels and cokernels.

Proof Let $f: A \to B$ be a homomorphism in Mod_{Rn} , $N=\{a \in A \mid f(a)=0\}$, $i: N \to A$, i(a)=a, $\forall a \in N$; $p: B \to B/f(A)$, p(b)=b+f(A). Then ker f=[N,i] and Coker f=[p, B/f(A)].

Proposition 2 (see [1]). Let A,B be R-n-modules and f: A \rightarrow B a homomorphism. The following sentences are equivalent:

- a) f is an injective homomorphism
- b) f is a monomorphism in Mod Rn
- c) For any R-n-module A' and any homomorphism $\alpha: A' \to A$, $f \circ \alpha = 0$ implies $\alpha = 0$
- d) Ker f=[0]

Proposition 3 (see [1]). Let A,B be R-n-modules and f: $A \rightarrow B$ a homomorphism. The following sentences are equivalent:

- a) f is a surjective homomorphism
- b) f is an epimorphism in Mod Rn
- c) For any R-n-module B' and any homomorphism $\beta: B \rightarrow B'$, $\beta \circ f = 0$ implies $\beta = 0$
- d) Coker f=[0]

Corollary Mod n is a perfect category.

Theorem 4 Mod_{Rn} is an exact category.

Proof a) We prove that Mod_{Rn} is a normal and conormal category. Let A,B be R-n-modules and F: A \rightarrow B a monomorphism in Mod_{Rn} . Then $[\lambda,f]$ =ker p, where p: B \rightarrow B/f(λ) is the homomorphism defined by p(b)=b+f(λ).

If f: A \rightarrow B is an epimorphism in Mod_Rn, then [f,B]=Coker i, where i: ker f \rightarrow A is the homomorphism defined by i(a)=a.

- b) $\mathsf{Mod}_{\mathsf{Rn}}$ is a category with kernels and cokernels (see theorem 3).
- c) Finally we prove that every morphism from Mod_{Rn} can be decomposed in a product of a monomorphism and an epimorphism.

Let $f: A \to B$ be a morphism in Mod_{Rn} ; then $g: A \to f(A)$, g(a)=f(a) is an epimorphism, and $i: f(A) \to B$, i(b)=b is a monomorphism and $f=i \circ g$.

4. Remark. If we define linear independence in R-n-modules in the same way as in usual R-modules, this brings us to the analogous notions of basis and free R-n-modules. Unfortunately, further results cannot be obtained because of the non-uniqueness of the coordinates of an element relative to the basis of the R-n-module. Though the following result holds:

Proposition 4. A is a free R-n-module if and only if \overline{A} is a free R-module (where the binary operation in $\overline{A} = (A, \hat{+})$ is defined as in [1]: $a\hat{+}b = (a, b, 0, ..., 0)$.)

Proof. Let B $\subseteq A$ be a basis of \overline{A} . Then $\forall x \in A \exists b_1, \dots, b_k \in B$, $r_1, \dots, r_k \in \mathbb{R}$ such that $x = r_1b_1 + r_2b_2 + \dots + r_kb_k$; therefore

 $x = (...((r_1b_1, r_2b_2, 0, ..., 0), r_3, b_3, 0, ..., 0), ...), r_kb_k, 0, ..., 0)$ = $= (r_1b_1, r_2, b_2, ..., r_kb_k, 0, ..., 0),$

if k in , or $x = (...(r_1b_1, r_2b_2, ..., r_nb_n), r_{n+1}b_{n+1}, ..., r_kb_k, 0, ..., 0)$, if k in .

Anyway, x is a linear combination of elements from B.

If $b_1, \ldots, b_s \in B$, $s \equiv 1 \pmod{n-1}$ and $(\ldots (r_1b_1, \ldots, r_nb_n)_{\circ}, \ldots, r_sb_s)_{\circ} = 0$

then $r_1b_1+\ldots+r_sb_s=0$ which implies (as B is a free set in \overline{A}) that $r_1=\ldots=r_s=0$. This proves that B is also free in A. The converse assertion is proved in an analogous way.

REFERENCES

- CELAKOSKI, N.: On n-modules, Godišen Zb. Electro-Maš.Fak.Univ. Skopje 3(1969), 15-26
- POST, E.L.: Polyadic groups, Trans. Amer.Math.Soc., 48(1940), 208-350
- PURDEA, I., PIC, Gh.: Tratat de algebră modernă, vol.I, Editura Academiei RSR, București, 1977
- PURDEA, I.: Tratat de algebră modernă, vol.II,
 Editura Academiei RSR, București, 1982.

UNIVERSITY OF BAIA MARE
DEPARTMENT OF MATHEMATICS
4800 BAIA MARE
ROMÂNIA