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NYNAMICES OF IMMERSED TUBE TAKING INTO ACCOUNT THE TUBE
BAFFLE THPACT

Parig CIORNEITU and Marcel MIGDALOVICTI

ABSTRACT This paper presents an analytical model for the
immersed tube-baffle interaction. In this case both squeeze film
and impact effect lead to the system eguations coupling. Using the
exponentials of operators the problem is solved in AN spaces, whero
the lateral displacement and welocity of the tube are given.
Finally the influence of some parameters related to the contact

force is shown in Table IT.

INTRODUCTION The tube vibrations against a baffle plate in a
licquid is quite different from the unimmersed case. It 15 necessary
now to consider the effects caused by the sgqueeze-fTilm and the
rube-to-fluid viscous damping. The former is the dominant mechanism
among the others and its influence cannot be neglected. Further, weo
shall present, according te Fig.l, mathematical model of the
immersed fixed-fixed taking into account its interaction with a

baffle.
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PROBLEM FORMULATION As it can be seen in Fig.l, the model is
restricted to a fixed-fixed tube immersed in water. The physical
characteristics of the system are;

1 - length of the tube; EI - bending rigidity; m - mass density per
unit length; p - mass density of the water; D - hydraulic diameter;
A - radial clearance; h - baffle thickness.

The whole analyvsis is made under the following hypotheses:
- the tube lateral displacement is small, so0 that the small
oscilatione theory is applicable.
- the length of the tube is very large as compared to thickness h
and we mav assume that the contact force acts at x=X,.
- the impact force is assumed to be an elastic one.

The partial differential eqguation of the motion for Lhe

transverse displacement is presented in eq. (1).

i Fv e Fv____dv
E'JfE '-"lll"Eil '&t+£m” x) ‘.’t"L“L?I']v-—,:1 g g 1
&
+ mﬂ_tT:+ [C,+8 (x-x_) HC,,) % + (1)

+ Bix-x_) [k (vix, t)-A)H{vi{x_, t) -4} +

+ k,(-vix, t) -A)H-vix, t)-A)] = fix, £)

where:

ﬁf=-H{—v{xh,t}—ﬁ}eﬁivix,t}-ﬁ} - t are the space and time variable
respectively; vi(x,t) is the lateral displacement of the tube; T{)
iz the axial tension; Rc - is the equivalent stiffness; iz the
tube-to-fluid viscous damping coefficient; ¢,y - 1s the squeeze-
film damping coefficient integrated over the h: m is the mass per
unit length of the tube including the added mass; fix,t] 1z the
driving force per unit length; wu iz the internal damping
coefficient; g is the gravitational acceleration; 6{) is Dirac's
delta funcetion and H{) is Heaveside's unit step function.

The boundary conditions for a fixed-fixed tube are:
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VX, ) | g = VX, E) puy = 0 (2]
ﬂ?{aﬁi: i) b = av[a.*: £ fiom D

and the initial conditions:

dvix, £)

It Ir_—...u = E’Uﬂ (3}

vix, &)l = £ix),

For purposes of the analysis it is more convenient to use

dimensionless parameCars:

iy g BLaara k.. oo W
£ 7i ¥ [—=1 =5 i
& = J;—[—;E]Il“; B = —J—'!E, i T{;}F (4)
iim Cd s A T e
(EIm) /2’ (ETm) 12’ 1

P o iy " 1/2 B k1’
F " : 0 { ] wl?; 7 5

Taking into account the first interaction and substituting egs (4)

into ege. (1), {(2), (3} we ohtain:

Hw Fw Fw . oW
a +it EE‘ET+[ﬂ{1 =£) -T'] — EEE ﬁa—a 1

o SHyeb (3-8l G ¢ 5
+ b (E-E.) (w-0)H{w-8) = F(E, %)
The new boundary conditions:

W{E t) [gmo = WIE,T) gy = O {6)

a"{aE-E’ T) hln - aw{a%rf} IE-i =0

and the new initial conditions:
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Wik, %) | = 17°E(x) {7}

":I_.
-g-:-’;f_n - 1B g0

We search the solution in the form

wik, ) = ¥ i, (E)g,le), (8)
n=1
where *n:E] is Lhe nt]"l natural funcltion wich satisfies the following
system:
ﬂq.[]’ﬂ—l* =1 fa)
dﬁ.. d:EE

*ll-l] = *l!-.]_ i Jd&é”a-g. = %lfil = 0,

and the orthogonality conditions:

] o .
EL ¥, - g dE =B, (10}

These functions have the form:

¥, (E) =, 2in st + ¢,, coa s + o, sh 1§ + o, ch 1k (11)

where!
e, = (rfs shr +ain 8)/(ch r-cos 8); 0, = -1

cyy, = ~(Shr + rfeeins)/(chr -cos 8); =1
arnd

r= (-Of2+((Uf2)2+Q) /2y 12

g = (Uf/2+((O/2)2+0) /)12, 7= p-T

The harmonic eigenvalue problem is a self-adjeoint one and A,
aigenvalue must satisfy the characteristic eqguation
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1-1/2 (coa r+ gxain riexp 8-1/2(cos s- Y gin rlexp(-s) = 0 (L2}
2

aubstituting eg. (8} into eq.{5}, multiplying the resulting

equation by ¥ and then integrating with respect to

E from 1 we
obtain:

alIf —B<wik_ v)<0

Gt Y (R 800 *V B S A * {13}
msl

* E ll-ﬁm_ﬂ'bﬂ} qﬂ 'Eln H=1r2f PRI ;H
=1

where:

Ay = Hi_{ i;nhdh By = %ﬂ;{ E:-é'#nﬂ’i ;

o
tom = —2E ﬂ;‘f (52 #a (€)W (EL)
(EIm)
o h
K = l—itﬂh{—d
where:

v - kinematic visceosity, D - hydraulic diameter, D
of the baffle.

By hole diameter

As the internal damping is small L coefficient was chosen so thet
the damping ratic bhe 0,1% over all the modes.
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Under these circumstances eg.4613) can be rewritten wnder

matrix form:
{gt+ DG I+ [Elig ) =gt , {14}
whare:
dyy = a;4¥ 0 %8

Eij = L.{a”'ﬁb"j i,j = 1'2' . ...'N

we put eqg.(l4) under the following form:

iz} = [AllZz i+ [B(x)] . (15}

whers:

z)=9; BN =2,
o § (]

-[D] -[E]
[A] -[[ﬂ [ﬂ]] (16)

Making the transformation

2} = [} . {17}

we oghtain:

lph+e [T gl = G ()}, (18)
where [J] matrix is a guasidiagonal one:

4] = [Pl (0] § Jy = (D418 5

Raﬂj —-Imf,
- 9
Loy [Imﬂj Ref, ] e

Here [U] matrix is defined as:

(0] = [Im®'} (Re®. . (Im®T {Re®] | (20)

whera:
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[Remj]; Heﬁj and 1Tm¢ji; Imﬁj are real imaginary values of !¢j§
eigenvalue respeclively wich belong to [A] matrix.

cigen vesbor,
Wae assume here that for j=2k-1, k=1l,4,....HN lmﬂj}ﬂ.

The solution of eg.{18) is:
{21)

g} = exp ([J1%) [fexp (- [T s){G(s)lds + { K]
o

where:
(st} = [0 -HB(=)]

The solution of eq.(18) can be rewritten as:
(22)

gl = lptt + {pF

where:
[qﬂl = related To
eg.(18).
gl
95 (1) = exp(tRep,) [k; cos (tImfl,) -ky,,sin (vImp )]

J =2k-1, k=1,2,...,N

is the solution of Lhe homogencous edqg.
- i5 the particular solution of eq.{l8).

(23)

pj(t) = exp(tRep, ) [k, sin({cImp, ) + k; cos(tImB; )]
j=2kn k=l;2,...,ﬂ

into account the

are evaluated taking

Here kKj constants

initial conditions (T} ;

L T
o5 = EL exp [ (t-5) ReP,] [cos (v-5) Imp ] »

*L!J-Jﬂi—ﬂin[ l:T-E} MJ'] u_'l""1|lﬂl] dE j=2k_l.- k=1; 2; » 8 4 ;N

N
¢ = ?:J; exp[(t-5) ReP, ] [sin[(s-=) ImB, ]+ cidi

My @ +cos[it-5) ImP,.,luy ,0,1ds Fe=2k, k=1,2,....N
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Finally, the dimensionless lateral displacement and velocity

are:
¥ K )
wi(E,t) = ?: ¥, { Im® e np2i-1+Re® e Np2F)
:: : (25
wi(E, 1) =§ ¢, (Im®Y p27-1+Re®i T 927)
] ml
h} I
wi(E_ t) 20 or w(f_,t),<-0
N ) {6
Gt Y (8t Vb by v Y, (B Phuonl g = Oy
= =1
where:

Q, = f:ﬂrn{nde « Onoy_(E_)

Here & function is defined as;
1 if wi(E_,t)=20

a8 - (271
-1 if wi_, t)=-0

The solution of eg. {26) has the same form as eq. (22). Now the

integration into @% will be done from 1, to T and the new kj

constants of q-_'? will be evaluated from the continuity conditions

of displacemeant and velocity at =T, Here T, iz the dimensionless

contact time wich can be evaluated from eq.:

wi(_, v)=0 (28)
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NUMERTCAL RESULTS AND DISCUSSTONG

The numerical results of this study are based on the above
model. To keep the analysis sufficiently gimple we set [{x)=g{x}=0

and the driving force as:

flx, &) = & (x-x,) P, sinwt (29)

Moreover, the evolution of Lhe Ec contact point is considered
till the first moment when a trend ol getting out of the contact
appears.

The parameters used in this computation are given in Table T,
also some numerical results as Fc=mﬂi{“[H{EE,T}'GJI the maximum of
the contact force and At the duration of the contact are presented
in Table IT. We mention here that all the computation is made in
considering the first five modes.

The evolution of w(E.. 1) the dimensionless lateral
digplacement and of wif. 1} the dimensionless velocity of §, the
contact point are displayed in Figs. 2,3 and 4 taking into account
dofferent stiffnesses.

The contribulions un{ﬁﬂ.Tﬁ coming from solution (323) and
h‘p'u'[ﬁc,'lril. upFI:Eﬂ.'[} coming from solution (24} to the l..'[EE..III area
presented in Figs. 5,6 and 7. Here upﬁ[Ec,Ti take into account the
baffle stiffness and the driving force effocts respectively, while
uﬂ[Ec.tJ considers the initial conditions.

Theses figures reveal that the lateral displacement of Eﬂ
during the contact is virtually controlled by HpiEEE.T] and wﬂ{Ech]
for small values of y.

As shown in Table II the influence of h parameter to F, the
contact force iz weak, but in order to diminish the contact
pressure the contact surface should be large.

other effect of the h parameter is that T, the contact time
increases due to the squeeze-£ilm so  that tc=ﬂ.7nﬂﬁm-ﬂl when
h=0,01lm and tc=ﬂ,?zllﬂ~ﬂj for h=0,03m (@=94,25 rad/fs).

The influence of @, the forcing frequency. 4as it can be seen
from Table II, is weak when this was increased from w=94,25 rad/s
to 157 rad/fs.
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dimencionless stiftness wich controls the wvalues of F:*

respect for small values of g it 15 necessary to consider more than

most

important

parameter

M2

for this

five modes for an accurate ralculation.

mode 1

is g the
In this

Finally, as a particular case of tLhls topic we present in

Figs. 8 and 9 the evolution of . when p=0,

h=0,01m,

e=15%7 radss

and n=196900 where It can be seen that Lhe wveloclity decreases
sharply (see Fig.B) as compared with Fig. 2.
TABLE 1. PARAMETERS USED IN COMPUTATION
PARAMETER _k SYMBOL DIMENSION VALUE
Langth of the tube l fml e 1 [ SR
Tube diameter STy g imi 19, 1x10°°
| Hydrautic diameter D im] .5
Mz densily of water 2 {Egnar 10’
Masa / unit langth - m Epem 1 0,504
Kinematie viscowity v L mwh 10°
Bending rigidity El [Nm® 4978
Baffle thickness e 3 ol 102 a0
Eguivalent stifiness b ke [Mes 10°
Tube baffle clearance A fm] 025103
Baffle lomtion P X imi 1.29
Location of the excitation o iml_ .5
Driving fores intensity B Po iN] i B
Forcinp frequency a {rads”] 94,25 157
TABLE 1I. NUMEBRICAL RESULTE
Ly . LY =" e Pmn
2B 12 SUITE 4+ 03 207TE-4 -3T14E + 01 _3952B+ 91 ARITE+ 00 - TOOIE-01
S164E +02 SIHE-0] 4286E + 04 ~J3HE+ 0]  FHMTE+ M -S141E-0 6L E-0L
g - T o m Fity h SR .
J3E-14 esE+ | 19E+H | MISE+07 SG465E01 AE-01 L1TAE (M
3 J6IE-14 03B+ 00 | 1969E+04 | 94SE402 | s4T9E01 IE-01 L TE 4 )
. . JA969E +04 | 1FTE+03 _5R15HE0 AE-01 183K +00
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