Buletinul Științific al Universității din Baia Mare Seria B, Matematică-Informatică, vol.X(1994), 1-14

ON (m,n) - GENERALIZED RINGS

Maria S.POP, Lăcrimioara IANCU

Summary. In the papers [1],[2],[4],[6],[9] various authors continue the study of ordinary rings to the case where the underlying group and semigroup are respectively an m-ary commutative group and an n-ary semigroup. Because the usual commutative group concept may by generalized also as semicommutative m-group (by Dörnte [3]), the following paper is concerned with the extension in this sense of the usual (m,n)-ring concept.

For self-containment we give some definitions and results which will be used in the sequel.

1. NOTIONS AND PRELIMINARY RESULTS

Definition 1.1. An <u>n-semigroup</u> is an algebraic system (A, \circ) with one n-ary operation $\circ: A^n \to A$, $n \in \mathbb{N}$, $n \ge 2$ such that for any set of elements $a_1, a_2, \ldots, a_{2n-1} \in A$ and any $k=1, \ldots, n-1$ it is true that

$$((a_1, \ldots, a_n), a_{n+1}, \ldots, a_{2n-1}) =$$

= $(a_1, \ldots, a_k, (a_{k+1}, \ldots, a_{k+n}), a_{k+n+1}, \ldots, a_{2n-1}).$

shortly
$$((a_1^n)_a a_{n+1}^{2n-1}) = (a_1^k (a_{k+1}^{k+n})_a a_{k+n+1}^{2n-1})$$

Definition 1.2. An <u>n-group</u> is an n-semigroup (A, \circ) in which the equations $(a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n)_\circ = a_i$ have a unique solution in A for arbitrary $a_1, \ldots, a_n \in A$ and for each $i \in \{1, \ldots, n\}$.

Definition 1.3. An n-semigroup (n-group) (λ, \circ) is <u>commutative</u> if the operation " \circ " is invariant under each permutation of the elements involved.

Definition 1.4. [3] An n-semigroup (n-group) is semicommutative if $(a_1, a_2, \dots, a_{n-1}, a_n) = (a_n, a_2, \dots, a_{n-1}, a_1)$ for arbitrary $a_1, a_2, \dots, a_n \in A$.

Evidently, for n=2 the commutative and semicommutative n-semigroup (n-group) concepts coincide.

Definition 1.5. [5] An n-semigroup (λ, \circ) is entropic (medial, for other authors) if

$$((a_{11},a_{12},\ldots,a_{1n})_{\circ},(a_{21},a_{22},\ldots,a_{2n})_{\circ},\ldots,(a_{n1},a_{n2},\ldots,a_{nn})_{\circ})_{\circ} = \\ = ((a_{11},a_{21},\ldots,a_{n1})_{\circ},(a_{12},a_{22},\ldots,a_{n2})_{\circ},\ldots(a_{1n},a_{2n},\ldots,a_{nn})_{\circ})_{\circ} \\ \text{for arbitrary } a_{ij} \in A; i,j \in \{1,\ldots,n\}_{\circ}.$$

Definition 1.6. An element asA of an n-semigroup (A, \circ) is called idempotent if (a, a, ..., a) = a.

Definition 1.7. An element esA is called an i-identity (identity) element of (A, \circ) if for each x \in A we have

$$(e, \ldots, e, X, e, \ldots, e) = x ((x, e, \ldots, e) = (e, X, \ldots, e) = (e, \ldots e, X) = x)$$

Definition 1.8. In the n-group (A,\circ) , the solution of the equation (a,a,\ldots,a,x) and is called the guerelement of "a" (by Dörnte [3]) and it is denoted by \overline{a} . The element \overline{a} has the additional property

$$(X, \alpha, \ldots, \overline{\alpha}, \ldots, \alpha) = (\alpha, \ldots, \overline{\alpha}, \ldots, \alpha, x) = x$$

for each $x \in A$.

Proposition 1.1. [3] If (A, \circ) is a semicommutative n-semigroup then it is an entropic n-semigroup.

The converse is not true, for example (A, \circ) ; $(a_1, \ldots, a_n)_{\circ} = a_1 \forall a_1, \ldots, a_n \in A$ is an entropic n-semigroup but not a semicommutative one.

Proposition 1.2. If (A, \circ) is an entropic n-group then (A, \circ) is semicommutative.

Proof. For each $a_1, \ldots, a_n \in A$ we have

$$(a_{1}, a_{2}, \dots, a_{n-1}a_{n})_{\circ} = ((a_{1}, a_{2}, \dots, a_{n})_{\circ}, \overline{a}_{n}, a_{n}, \dots, a_{n})_{\circ} =$$

$$= ((a_{1}, a_{2}, \dots, a_{n})_{\circ}, (\overline{a}_{1}, a_{1}, \dots, a_{1}, \overline{a}_{n})_{\circ}, (a_{1}, \overline{a}_{1}, \dots, a_{1}, a_{n})_{\circ}, \dots$$

$$\dots (a_{n}, a_{1}, \dots, \overline{a}_{1}, a_{1})_{\circ})_{\circ} = (by \ entropy) =$$

$$= ((a_{1}, \overline{a}_{1}, a_{1}, \dots, a_{1}, a_{n})_{\circ}, (a_{2}, a_{1}, \overline{a}_{1}, \dots, a_{1})_{\circ}, \dots , (a_{n-1}, a_{1}, \dots, \overline{a}_{1})_{\circ},$$

$$, a_{n}, \overline{a}_{n}, \dots, a_{n}, a_{1})_{\circ})_{\circ} = (a_{n}, a_{2}, \dots, a_{n-1}, a_{1})_{\circ} ,$$

Corollary 1.1. If (A, \circ) is a semicommutative n-group, then $\overline{(a_1, \ldots, a_n)} = (\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n)$, $\forall a_1, \ldots, a_n \in A$.

Proof. By proposition 1.2 we have

$$((a_1,\ldots,a_n)_{\circ},\ldots(a_1,\ldots,a_n)_{\circ},(\overline{a}_1,\ldots,\overline{a}_n)_{\circ})_{\circ} =$$

$$= ((a_1,\ldots,a_1,\overline{a}_1)_{\circ},\ldots,(a_n,\ldots,a_n,\overline{a}_n)_{\circ})_{\circ} =$$

$$= (a_1,\ldots,a_n)_{\circ}, \forall a_1,\ldots,a_n \in A \text{, hence by definition 1.8}$$

$$\overline{(a_1,\ldots,a_n)_{\circ}} = (\overline{a}_1,\ldots,\overline{a}_n)_{\circ} .$$

Definition 1.9. Let (A,\circ) be an n-group. A non empty subset B of A is called a <u>sub-n-group</u> of (A,\circ) if the restriction of " \circ " to B makes it an n-group.

Proposition 1.3. A non empty subset B of A is a sub-n-group of the n-group (A,\circ) if and only if:

1
$$X_1, X_2, \dots, X_n \in B \rightarrow (X_1, X_2, \dots, X_n) \in B;$$

$$2" x \in B \rightarrow \overline{x} \in B$$
.

Definition 1.10. A subset $I \subseteq A$ of an n-semigroup (A, \circ) is an i-ideal, $i \in \{1, 2, \ldots, n\}$, of A if $(A, \ldots, A, I, A, \ldots, A) \subseteq I$. An i-ideal of A for all i=1,2,...,n is called i-deal of (A, \circ) .

Definition 1.11. An element $z \in A$ is called a <u>zero</u> of A if $(z, x_1, \ldots, x_{n-1}) = (x_1, z, \ldots, x_{n-1}) = \ldots = (x_1, \ldots, x_{n-1}, z) = z$,

for every $X_1, \ldots, X_{n-1} \in A$.

Definition 1.12. An equivalence relation ρ of an n-semigroup (A,°) is called a <u>congruence</u> of the n-semigroup if the relation is compatible with the n-ary operation "°"; by this we mean

$$\forall x_i, y_i \in A ; x_i \rho y_i ; i=1, ..., n \rightarrow (x_1, ..., x_n), \rho (y_1, ..., y_n),$$

In $A/\rho = \{\hat{a}/a \in A\}$; $\hat{a} = \{x \in A/a\rho x\}$ we define an n-ary operation "*" by $(\hat{x_1}, \hat{x_2}, \dots, \hat{x_n})_* = (x_1, x_2, \dots, x_n)_*$.

It is easily seen that

Proposition 1.4. [7] 1° If (A, \circ) is a semicommutative n-group and ρ is a congruence of (A, \circ) , then $(A/\rho, *)$ is a semicommutative n-group, where the querelement of the equivalence class \hat{a} is \hat{a} ;

- 2" The equivalence class \hat{a} is a sub-n-group (A, \circ) if and only if the element $a\in A$ is 1-identity for (A, \circ).
- 3° If H is a sub-n-group of the semicommutative n-group (A, $^{\circ}$), then there is a unique congruence ρ

$$a\rho b = (aH...H)_o = (bH...H)_o$$

so that $H \in A/\rho$ and $A/\rho \sim A/H$; $A/H = \{(xH...H), x \in A\}$.

4° The equivalence class \hat{a} is an ideal of the n-semigroup (λ, \circ) if and only if \hat{a} is a zero in A/ρ .

2. GENERAL DEFINITIONS AND ELEMENTARY PROPERTIES

Definition 2.1. An universal algebra $(R,[],\circ)$; $[]: R^n \to R$; $\circ: R^n \to R$ is an (m,n)-generalized ring, $m,n \in \mathbb{N}^n \setminus \{1\}$, if:

- 1° (R,[]) is a semicommutative m-group;
- 2° (R, °) is an n-semigroup;
- 3° the following distributive laws hold for all choices of $a_1,a_2,\ldots,a_n,b_1,\ldots,b_m\in R$ and for all choices of $i\in\{1,2,\ldots,n\}$:

$$(a_1, \ldots, a_{i-1}, [b_1, \ldots, b_m], a_{i+1}, \ldots, a_n)_n =$$

$$= [(a_1, \ldots, a_{i-1}, b_1, a_{i+1}, \ldots, a_n)_n, \ldots, (a_1, \ldots, a_{i-1}, b_m, a_{i+1}, \ldots, a_n)_n].$$

Clearly, an ordinary ring is a (2,2)-generalized ring.

Example 2.1. $(\mathbb{R},[],\circ)$ where \mathbb{R} is the set of real numbers

$$[\,]:\mathbb{R}^{2m+1}\to\mathbb{R}\;;\;[X_1\,,X_2\,,\,\ldots\,,X_{2m+1}\,]=X_1-X_2+X_3-\ldots+X_{2m+1}$$

$$\circ : \mathbb{R}^n \to \mathbb{R} : (X_1, X_2, \dots, X_n) \circ = X_1$$

is a (2m+1, n) - generalized ring.

Example 2.2. $(Z_n, [], \circ)$ where $[\hat{a}, \hat{b}, \hat{c}] = \hat{a} + \hat{n-b} + \hat{c}$, $\hat{a}\hat{b} = \hat{a}\hat{b}$ is a (3,2)-generalized ring.

As in ordinary (m,n)-rings [1], we define the semiadditive idempotent and the multiplicative idempotent as an idempotent element in (R,[]) respectively in (R,o).

The element \overline{a} will denote the semiadditive querelement of a in the m-group (R,[]) and the element \underline{a} will denote - if it exists - the multiplicative querelement of "a" in the n-semigroup (R,\circ) .

Definition 2.2. An element $z \in \mathbb{R}$ is called a <u>zero</u> of R if it is a zero of the n-semigroup (\mathbb{R}, \circ) .

Evidently, if it exists, a zero of R is a multiplicative and semiadditive idempotent. A (m,n)-generalized ring may have at most one zero. A semiadditive and multiplicative idempotent is not necessarily a zero element; in example 2.1, every $a \in \mathbb{R}$ is a semiadditive and multiplicative idempotent, but this (2m+1,n)-generalized ring has not a zero element.

In the example 2.2, every element of Z_z is a semiadditive idempotent, 0 and 1 are multiplicative idempotents, and 0 is a zero element.

Proposition 2.1. If $(R,[],\circ)$ is an (m,n)-generalized ring, $a_1,a_2,\ldots,a_n\in R$, then

$$(a_1, a_2, \ldots, a_n) = (a_1, a_2, \ldots, a_i, \ldots, a_n), ; i=1,2,\ldots, n$$

Proof. Because (R,[]) is an m-group, by querelement's
definition and by distributive law we have

$$(a_1, \ldots, a_i, \ldots, a_n) = (a_1, \ldots, [a_i, \ldots, a_i, \overline{a}_i], \ldots, a_n) =$$

 $= [(a_1, \dots, a_i, \dots, a_n), \dots, (a_1, \dots, a_i, \dots, a_n), (a_1, \dots, \overline{a}_i, \dots, a_n), (a_1, \dots, a_n),$

Proposition 2.2. 1° If $a_1, \ldots, a_m \in \mathbb{R}$ are semiadditive idempotents of the (m,n)-generalized ring $(R,[],\circ)$, then $[a_1,\ldots,a_m]$ is an semiadditive idempotent too;

2° If $a\in R$ is an semiadditive idempotent then for every $b_1,\ldots,b_n\in R$ and for each $i\in \{1,\ldots,n\}$ the element

 $(b_1,\ldots,b_{i-1},a,b_{i+1},\ldots,b_n)$, is an semiadditive idempotent too.

Proof. Indeed, by proposition 1.1 the operation [] is entropic, and

1°
$$[[a_1, \ldots, a_m], \ldots, [a_1, \ldots, a_m]] = [[a_1, \ldots, a_1], \ldots, [a_m, \ldots, a_m]] = [a_1, \ldots, a_m]$$

$$2^{\circ} \quad (b_{1}, \ldots, b_{i-1}ab_{i+1}, \ldots, b_{n})_{\circ} = (b_{1}, \ldots, b_{i-1}, [a, \ldots, a] b_{i+1}, \ldots, b_{n})_{\circ} = \\ [(b_{1}, \ldots, b_{i-1}ab_{i+1}, \ldots, b_{n})_{\circ}, \ldots, (b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{n})_{\circ}] .$$

Definition 2.3. A subset $S\subseteq R$ is called an (m,n)-subring of $(R,[],\circ)$ if S is a sub-m-group of (R,[]) and S is closed for the n-ary operation of R; this means

$$[S,S,\ldots,S]=S$$
, $\overline{S}\subseteq S$, where $\overline{S}=\{\overline{x}\in R\mid x\in S\}$ and $(S,S,\ldots,S)_{-}\subseteq S$.

It is easy to check that the set $(R,[],\circ)$ of the (m,n)-subrings of the generalized (m,n)-ring $(R,[],\circ)$ is an algebraic closure system. Consequently, $(\mathcal{J}(R,[],\circ),\subseteq)$ is an algebraic lattice.

Definition 2.4. A subset $I\subseteq R$ is called an $\underline{i-ideal}$, $i\in\{1,2,\ldots,n\}$ of R if (I,[]) is a sub-m-group of (R,[]) and $(R^{i-1}IR^{i-1})\subseteq I$. If I is an i-ideal of R for all $i=1,2,\ldots,n$, then I is called \underline{ideal} of $(R,[],\circ)$.

The following properties of (m,n)-rings (see [1],[4]) remain valid in the case of (m,n)-generalized rings:

Proposition 2.3. i) The intersection of an arbitrary number of i-ideals of R is an i-ideal, too.

- ii) If I_1, I_2, \ldots, I_n are i-ideals of R, then $[I_1, I_2, \ldots, I_n]$ is an i-ideal of R.
- iii) Let B_1, B_2, \dots, B_n be subsets of a ring R and define $\langle (B_1, B_2, \dots, B_n)_s \rangle = \{ [(b_{11}, b_{12}, \dots, b_{1n})_s, \dots, (b_{p1}, b_{p2}, \dots, b_{pn})_s] \mid b_{ij} \in B_j, p \in 1 \pmod{m-1} \}$

If R is a commutative (m,n) generalized ring and one subset (say B_1) is an ideal of R then $<(B_1,B_2,\ldots,B_n)$.> is an ideal too.

- iv) I is an ideal of R if and only if I is an ideal
- v) If I is an ideal of R then $\tilde{I} = \{x \in R \mid \overline{x} \in I\}$ is an ideal, too. **Proof.** Easy by corollary 1.1 and proposition 2.1.

Definition 2.5. By an <u>i-center</u> $(i \in \{2, ..., n\})$ of an (m,n)-generalized ring we mean the set

$$C_{i}(R) = \{a \in R \mid (ax_{2}^{n})_{i} = (x_{2}^{i}, a, x_{i+1}^{n})_{i}, \forall x_{2}, \dots, x_{n} \in R\}$$
.

 $C(R) = \bigcap_{i=2}^{n} C_i(R)$ is called the <u>center</u> of an (m,n)-generalized ring.

Proposition 2.4. If $C_i(R)$ is non-empty, then it is an (m,n)-subring of $(R,[],\circ)$.

Proof. Corollary 1.1. and proposition 2.1. allow a proof analogous to the one given by Dudek in [4].

Corollary 2.1. i) If C(R) is non-empty, then it is a maximal commutative (m,n)-subring of R.

ii) An (m,n) generalized ring R is commutative if and only if $C(R)=R \leftrightarrow C_2(R)=C_n(R)=R$.

Definition 2.6. Let R and R' be (m,n)-generalized rings. A mapping $f: R \to R'$ is called <u>homomorphism</u> if $f([x_1, \ldots, x_m]) =$

$$= [f(X_1), \dots, f(X_m)] \quad \text{a n d} \quad f((X_1, \dots, X_n)) = (f(X_1), \dots, f(X_n)),$$

$$\forall X_i \in \mathbb{R}, i = 1, \dots, \max(m, n).$$

Proposition 2.5. Let $(R,[],\circ)$, $(R'[],\circ)$ be (m,n)-generalized rings and $f\colon R\to R'$ a homomorphism. The following properties are

immediate:

- i) Each semiadditive idempotent of R is mapped by f in a semiadditive idempotent of R';
 - ii) $f(\overline{x}) = \overline{f(x)}$;
- iii) If f is onto and R has a zero 0, then f(0)=0' is a zero in R';
- iv) If S is an (m,n)-subring of R, then f(S) is an (m,n)-subring of R';
- v) If f is onto and S' is an (m,n)-subring of R', then $f^{-1}(S')$ is an (m,n)-subring of R;
- vi) If f is onto and I is an i-ideal of R, then f(I) is an i-ideal of R';
- vii) If f is onto and I' is an i-ideal of R', then $f^{\text{-}i}(I')$ is an i-ideal of R.

Definition 2.7. If f is a homomorphism of a ring R onto a ring R'having a zero 0', we call kernel of f the set $Kerf=\{x\in R\mid f(x)=0'\}$.

Proposition 2.6. The kernel Ker f is an ideal of R.

Proof. This proposition is a consequence of proposition 2.5, (vii)

Proposition 2.7. If I is an ideal in a ring R, then R/I with addition defined by proposition 1.4. and with multiplication defined by

$$([X_1, I, \ldots, I], \ldots, [X_n, I, \ldots, I]) = [(X_1, \ldots, X_n), I, \ldots, I]$$

is a ring.

Corollary 2.2. The binary relation defined by apb \Rightarrow [a,I,..,I]= = [b,I,...,I] is a congruence of R such that $I \in \mathbb{R}/p$ and $\mathbb{R}/p \simeq \mathbb{R}/I$. Note that $u \in I \Rightarrow [u,I,...,I] = I$.

If R has a zero 0, this zero belongs to all i-ideals and also to each ideal. Moreover, the subset of R consisting of 0 alone is an ideal denoted by (0) and called the <u>zero-ideal</u>. It is the only ideal of R consisting of one element.

Proposition 2.8. If R has a zero 0 and ρ is a congruence of R then $\rho<0>$ is an ideal of R, and every ideal of R can be regarded as the congruence class of 0 with respect to some congruence of R.

Proof. If 0 is a zero in R, then $\rho<0>$ is a zero in R/ ρ and by proposition 1.4., 4", $\rho<0>$ is an ideal of (R, \circ); $\rho<0>$ being a subm-group of (R,[]) we get that $\rho<0>$ is an ideal of the (m,n) generalized ring (R,[], \circ).

If I is an ideal of R, by $0\in I$ it follows that $I=\rho<0>$ (where ρ is the congruence defined by corollary 2.2).

ON (m,2)-REDUCED RINGS AND (m,2)-ASSOCIATED RINGS OF AN (m,n)-GENERALIZED RING

Let $(R,[],\circ)$ be an (m,n) generalized ring and u_1,\ldots,u_{n-2} fixed elements of R. Define a binary operation on R

 $:RXR \rightarrow R$ by $x \cdot y = (x, u_1^{n-2}, y)$. It is easily verified that this operation is associative and distributive with respect to the m-ary operation [], hence $(R,[],\circ)$ is an (m,2) generalized ring.

Definition 3.1. If $(R,[],\circ)$ is an (m,n) generalized ring, then $(R,[],\circ)$ is an (m,2) generalized ring called the <u>reduced ring</u> with respect to the elements $u_1,\ldots,u_{n-2}\in R$ and denoted by $red_{u_1^{n-2}}(R,[],\circ)$.

Remark 3.1. If $u_1, u_2, \ldots, u_{n-1}$ shortly u_1^{n-1} , is a right unit (as a system of n-1 elements) in $(R,[\],\circ)$, then u_{n-1} is a right unit in $red_{u_1^{n-2}}(R,[\],\circ)$. The element u_{n-1} is a unit in the (m,2) reduced ring $red_{u_1^{n-2}}(R,[\],\circ)$ if and only if u_1^{n-1} is a right unit and $u_{n-1}u_1^{n-2}$ is a left unit in the (m,n) generalized ring.

Example 3.1. If $(Z_4,[],\circ)$ is the commutative (3,3) generalized ring, where $[\hat{x},\hat{y},\hat{z}] = \hat{x} + 4 - \hat{y} + \hat{z}$ and $(\hat{x},\hat{y},\hat{z}) = \hat{x} \cdot \hat{y} \cdot \hat{z}$ then $red_3(Z_4,[],\circ)$ is a commutative (3,2) generalized ring with the unit $\hat{3}$.

The multiplication table is

	ĵ
î 3 2 î d	ŝ
$\hat{2}$ $\hat{2}$ $\hat{0}$ $\hat{2}$ $\hat{0}$ $\hat{3}$ $\hat{1}$ $\hat{2}$ $\hat{3}$ $\hat{0}$	3
$\hat{2}$ $\hat{2}$ $\hat{0}$ $\hat{2}$ $\hat{0}$ $\hat{3}$ $\hat{1}$ $\hat{2}$ $\hat{3}$ $\hat{0}$	5
0 0 0 0	ò

In the same manner $red_2(Z_4,[],\circ)$ is a commutative (3,2) generalized ring and the multiplication table is

*	ô	î	2	3
ô	ô	ô	ô	ô
î	ô	2	ô	ô 2
2	ô	ð	ô	
3	ô	2	ô	δ 2
- 1				

We shall give now a construction of an (m,2) generalized ring on a covering set of R.

Define on $R^{n-1}=(a_1^{n-1}|a_i\in R,\,i=\overline{1,n-1})$ a binary relation ρ by: $a_1^{n-1}\rho b_1^{n-1} \Leftrightarrow (xa_1^{n-1})_- - (xb_1^{n-1})_-,\,\forall x\in R - \rho \text{ is an equivalence relation;}$ denote the equivalence class of a_1^{n-1} with $\left\langle a_1^{n-1}\right\rangle$. On the factor set $R^{n-1}/\rho = R$, define a binary operation "*" by:

$$\left\langle a_1^{n-1}\right\rangle * \left\langle b_1^{n-1}\right\rangle = \left\langle a_1^{n-2} \left(a_{n-1}b_1^{n-1}\right)_*\right\rangle$$

It is easily verified that this operation is well defined and it is associative, hence (R., .) is a semigroup.

If u_1^{n-1} is a right unit in the (m,n) generalized ring (R,[], \circ) then the equivalence ρ defined above coincides with the relation "-" defined by:

$$a_1^{n-1} \sim b_1^{n-1} \leftrightarrow \left(u_{n-1} a_1^{n-1}\right)_* = \left(u_{n-1} b_1^{n-1}\right)_* \ .$$

Indeed if $a_1^{\beta-1} \sim b_1^{\beta-1}$ then $\forall x \in \mathbb{R}$ we have

$$\left(Xa_{1}^{n-1}\right)_{\circ}=\left(\left(Xu_{1}^{n-1}\right)_{\circ}a_{1}^{n-1}\right)=\left(Xu_{1}^{n-2}\left(u_{n-1}a_{1}^{n-1}\right)\right)_{\circ}=$$

$$= \left(X \, \mathcal{U}_{1}^{n-2} \left(\mathcal{U}_{n-1} b_{1}^{n-1} \right)_{\circ} \right)_{\circ} = \left(\left(X \, \mathcal{U}_{1}^{n-1} \right)_{\circ} \, b_{1}^{n-1} \right)_{\circ} = \left(X \, b_{1}^{n-1} \right)_{\circ} \, , \text{ hence } a_{1}^{n-1} \rho \, b_{1}^{n-1} .$$

The converse is obvious.

This remark shows that $R_{\circ}=R^{n-1}/$ and (R_{\circ},\cdot) is a semigroup with the right unit $\left\langle u_{1}^{n-1}\right\rangle$.

Define an m-ary operation on R_a , (), $R_a^{\mu} \rightarrow R_a$ by:

$$\left(\left\langle a_{11}^{1,\,n-1}\right\rangle ,\,\ldots ,\left\langle a_{m1}^{\,m,\,n-1}\right\rangle \right)_{+}=\left\langle u_{1}^{\,n-2}\,,\left[\left(u_{n-1}\,,\,a_{11}^{\,1,\,n-1}\right)_{*},\,\ldots ,\left(u_{n-1}\,,\,a_{m2}^{\,m,\,n-1}\right)_{*}\right]\right\rangle$$

It is obvious that this operation is well defined, i.e. it does not depend on the choice of the representatives.

Theorem 3.1. If $(R,[],\circ)$ is an (m,n) generalized ring with a right unit u_1^{n-1} , then

- 1) (R.,(),*) is an (m,2) generalized ring with right unit $\langle u_1^{n-1} \rangle$, called the (m,2) generalized ring associated to $(R,[],\circ)$.
- 2) If $u_{n-1}u_1^{n-2}$ is a left unit in the (m,n) generalized ring $(R,[],\circ)$, then (R,(),,*) is isomorphic to $\operatorname{red}_{n^{n-2}}(R,[],\circ)$.
- **Proof.** 1) By the definition of the operation (), by the distributive law for (R,[], o) and by associativity of the operation [] we deduce that the operation (), is associative.

Semicommutativity of the operation [] implies semicommutativity of the operation ().

 $\forall \langle a_1^{n-1} \rangle \in \mathbb{R}$, the equation

 $(\langle a_1^{n-1}\rangle,\ldots,\langle a_1^{n-1}\rangle,\langle x_1^{n-1}\rangle)$ = $\langle a_1^{n-1}\rangle$, has the solution

 $\langle x_1^{n-1} \rangle = \langle a_1, \dots, \overline{a_k}, \dots, a_{n-1} \rangle$, $\forall k=1,\dots,n-1$, which is in fact the querelement of $\langle a_1^{n-1} \rangle$.

So, we have
$$\langle a_1^{n-1} \rangle = \langle a_1, \dots, \overline{a_k}, \dots, a_{n-1} \rangle$$
, $\forall k=1, \dots, n-1$. $\forall \langle x_1^{n-1} \rangle \in \mathbb{R}$, the following equality holds in R.:

$$\left(\left\langle X_{1}^{n-1}\right\rangle ,\left\langle a_{1}^{n-1}\right\rangle ,\ldots ,\left\langle a_{1}^{n-1}\right\rangle ,\left\langle \overline{a_{1}^{n-1}}\right\rangle \right)_{+}=\left\langle X_{1}^{n-1}\right\rangle$$
 .

Indeed,

$$\begin{split} &\left(\left\langle X_{1}^{n-1}\right\rangle ,\left\langle a_{1}^{n-1}\right\rangle ,\ldots ,\left\langle a_{1}^{n-1}\right\rangle ,\left\langle a_{1}^{n-1}\right\rangle \right)_{+}=\\ &=\left\langle u_{1}^{n-2},\left[\left(u_{n-1},X_{1}^{n-1}\right)_{\circ},\left(u_{n-1},a_{1}^{n-1}\right)_{\circ},\ldots ,\left(u_{n-1},a_{1}^{n-1}\right)_{\circ},\left(u_{n-1},a_{1},\ldots ,a_{n-1}\right)_{\circ}\right]\right\rangle \\ &=\left\langle u_{1}^{n-2},\left[\left(u_{n-1},X_{1}^{n-1}\right)_{\circ},\left(u_{n-1},a_{1}^{n-1}\right)_{\circ},\ldots ,\left(u_{n-1},a_{1}^{n-1}\right)_{\circ},\left(u_{n-1},a_{1}^{n-1}\right)_{\circ}\right]\right\rangle \\ &=\left\langle u_{1}^{n-2},\left(u_{n-1},X_{1}^{n-1}\right)_{\circ}\right\rangle =\left\langle X_{1}^{n-1}\right\rangle \\ &=\left\langle u_{1}^{n-2},\left(u_{n-1},X_{1}^{n-1}\right)_{\circ}\right\rangle =\left\langle X_{1}^{n-1}\right\rangle \\ \end{split}$$

These remarks show that (R, (),) is a semicommutative m-group. By a direct computation one can easily verify the distributivity law for * and (), so (R, (), *) is an (m, 2) generalized ring.

2) The mapping $f:R_n\to R$, $f(\langle a_1^{n-1}\rangle)=(u_{n-1}a_1^{n-1})_s$ is obviously well defined and one-to-one.

$$\begin{split} &f\left(\left\langle a_{1}^{n-1}\right\rangle *\left\langle b_{1}^{n-1}\right\rangle\right) = f\left(\left\langle a_{1}^{n-2} , \left(a_{n-1}b_{1}^{n-1}\right)_{a}\right\rangle\right) = \\ &= \left(u_{n-1}a_{1}^{n-2}\left(a_{n-1} , b_{1}^{n-1}\right)_{a}\right)_{a} = \left(\left(\left(u_{n-1}a_{1}^{n-1}\right)_{a}u_{1}^{n-1}\right)_{a}b_{1}^{n-1}\right) = \\ &= \left(\left(u_{n-1}a_{1}^{n-1}\right)_{a} , u_{1}^{n-2} , \left(u_{n-1} , b_{1}^{n-1}\right)_{a}\right)_{a} = \left(u_{n-1}a_{1}^{n-1}\right)_{a} \cdot \left(u_{n-1}b_{1}^{n-1}\right)_{a} = \\ &= f\left(\left\langle a_{1}^{n-1}\right\rangle\right) \cdot f\left(\left\langle b_{1}^{n-1}\right\rangle\right) \quad , \\ &f\left(\left(\left\langle a_{1}^{1,n-1}\right\rangle, \dots, \left\langle a_{m}^{n,n-1}\right\rangle\right)\right)_{+}\right) = \left(u_{n-1} , u_{1}^{n-2} , \left[\left(u_{n-1} , a_{11}^{1,n-1}\right)_{a}, \dots, \left(u_{n-1} , a_{ml}^{m,n-1}\right)_{a}\right]\right)_{a} = \\ &= \left[\left(u_{n-1} , a_{11}^{1,n-1}\right)_{a}, \dots, \left(u_{n-1} , a_{ml}^{n,n-1}\right)_{a}\right] = \left[f\left(\left\langle a_{11}^{1,n-1}\right\rangle\right), \dots, f\left(\left\langle a_{m1}^{m,n-1}\right\rangle\right)\right] \quad . \end{split}$$

This shows that f is a one-to-one homomorphism of (m,2) generalized rings.

If $u_{n-1}u_1^{n-2}$ is a left unit, then $\forall y \in \mathbb{R}$ we have

 $y = \left(u_{n-1}u_1^{n-2}y\right)_{\rm e} = f\left(\left\langle u_1^{n-2}y\right\rangle\right) \ , \ {\rm which \ shows \ that \ f \ is \ onto.}$

Example 3.2. Consider the (3,3) generalized ring $(Z_4,[],\circ)$ defined in example 3.1 and the system $\hat{3},\hat{3}$ which is a unit in (Z_4,\circ) . The (3,2) generalized ring associated with $(Z_4,[],\circ)$ will consist of the following elements

$$\begin{split} &Z_{4,} = \{\langle \hat{1}, \hat{k} \rangle \, | \, \hat{k} \in Z_4 \} \ , \ \text{where} \\ &< \hat{1}, \, \hat{0} \rangle = \{\, (\hat{0}, \hat{0}) \, , \, (\hat{0}, \hat{1}) \, , \, (\hat{1}, \hat{0}) \, , \, (\hat{0}, \hat{2}) \, , \, (\hat{2}, \hat{0}) \, , \, (\hat{0}, \hat{3}) \, , \, (\hat{3}, \hat{0}) \, , \, (\hat{3}, \hat{0}) \, , \, (\hat{2}, \hat{2}) \} \\ &< \hat{1}, \, \hat{1} \rangle = \{\, (\hat{1}, \hat{1}) \, , \, (\hat{3}, \hat{3}) \} \\ &< \hat{1}, \, \hat{2} \rangle = \{\, (\hat{1}, \hat{2}) \, , \, (\hat{2}, \hat{1}) \, , \, (\hat{3}, \hat{2}) \, , \, (\hat{2}, \hat{3}) \} \\ &< \hat{1}, \, \hat{3} \rangle = \{\, (\hat{1}, \hat{3}) \, , \, (\hat{3}, \hat{1}) \} \ . \end{split}$$

The multiplication table is:

*	<î,ô>	<î,î>	<î,2>	<î,3>
<î,ô>	<î,ô>	<î,ô>	<î,ô>	<î,ô>
<î,î>	<î,ô>	<î,î>	<î,2>	<1,3>
<î,2>	<î,ô>	<î,2>	<î,ô>	<î,2>
<1,3>	<î,ô>	<1,3>	<î,2>	<î,î>

and the addition is defined by $(\langle \hat{1}, \hat{a} \rangle, \langle \hat{1}, \hat{b} \rangle, \langle \hat{1}, \hat{c} \rangle)_+ = \langle \hat{1}, \widehat{a-b+c} \rangle$. The mapping $f: (Z_4, ()_+, *) \rightarrow (Z_4, []_+, *)$ defined by

 $f(\langle \hat{1}, \hat{k} \rangle) = (\hat{3}, \hat{1}, \hat{k}) = \hat{3} \cdot \hat{k} \quad \text{is a (3,2) ring isomorphism.}$

Remark 3.2. Theorem 3.1 is also valid in the particular case of (m,n) ordinary rings having right unit as a system of n-1 elements.

REFERENCES

- 1.CROMBEZ,G., On (n,m)-rings, ABH Math Sem.Univ. Hamburg, 37, 1972,
 p.180-199
- 2.CUPONA,G., Za (m,n)-prstenite Bilt.Fiz.Mat. Fac.Maced. Skopje, 16, 1965, p.5-10
- 3.DÖRNTE,W., Untersuchungen über veralgemeinerten gruppenbegriff Math, Zeit, 19, 1929, p.1-19
- 4.DUDEK,W.A., On the divisibility theory in (m,n)-rings.

 Demonstrativ Mathematica, vol.XIV, no 1, 1981, p.19-32
- 5.EVANS,T., Abstract mean values, Duke Mat.J., 30, 1963, nr.2, p.331-347
- 6.LEESON,I.J., BUTSON,A.T., On the general theory of (m,n) rings, Algebra Universalis 11 (1980), p.42-76
- 7.POP,S.M., Congruențe în n-semigrupuri, Bul.Şt.Univ. Baia Mare, Fasc.Mat.Fiz., vol.VI, 1983, p.5-10
- 8.POST,E.L., Polyadic groups, Trans.Amer.Math.Soc. 48, (1940), p.208-350
- 9.PURDEA,I., Les anneaux de type (m,n), Studia Univ. Babeş-Bolyai, Cluj, 20, 1975, p.3-10.

Received: May 18, 1994

UNIVERSITY OF BAIA MARE
DEPARTMENT OF MATHEMATICS
4800 BAIA MARE
ROMANIA