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ON (m,n) — GENERALIZED RINGS

Maria S.POP, L3crimioara IANCU

Summary. In the papers [1],[2],[4]1,[6],[9?] wvarious authors
continue the study of ordinary rings to the case where the
underlying group and semigroup are respectively an m-ary
commutative group and an n-ary semigroup. Because the usual
commutative group conceapt My by generalized also as
semicommutative m-group (by Dérnte [3]), the following paper is
concernad with the extension in this sense of the usual (m,n)-ring

concept.
For self-containment we give some definitions and results

which will be used in the seqguel.

1. NOTTIONS AND PRELIMIMNARY RESULTS
Definition 1.1. An p-semigroup is an algebraic system (A,=)
with one n-ary operation =: A" - A, neN, nz2 such that for any set
of elements a,,a,,...,d, €A and any kK=1,...,n=1 it is true that

(&, v @plardpqesverdayqle=
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shortly [.I::aln}q_ajfl-._}" = (alr{af:ﬂ_, ﬂ:ﬂ:ﬁ}“

Definition 1.2. An n-group is an n-semigroup (&,=) in which
the equations (&,,..«,8i0,%,84u,:+:,8:) = & have a unique solution
in A for arbitrary 8,,...,8,A and for each ie{l,...,n}.

Definition 1.3. An n-semigroup (n-group) {(A,~) is commutative
if the operation "=" is inwvariant under each permutation of the

elements invoalwved.
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Definition 1.4. [3] An n-semigroup {n-group) is
semicommutative if T T Y. - I DL - S - M ) for
arbitrary a,a,...,4,64 .

Evidently, for n=2 the commutative and semicommutative n-semigroup
(h—group) concepts coincide.

Definition 1.5. [5] an n-semigroup (A,*) is entropic (medial,
for other authors) if

I:.I:‘E';'T:I.:I."al:’ e ‘alre}"" {a.ﬁl"a:ﬂv AT -‘d.‘:el'-:' &F ®owomy {'5-.-..'1 ‘]:;E" LR ] -ﬂ_.:._.:..:'.].=
=E|:'ﬂ;irli;1_rl--; HJ]": {dlapﬂzz:llirl’ine]ulll I:&'Eﬂ-raﬂ_ﬂ" ..._.--lil.ll:l:lu:l‘
for arbitrary a,.€a;i,7ell,...,n .

Definition 1.6. an element acA of an n-semigroup (A,~) is
called idempotent if (a,a,...,al.=a.

Definition 1.7. An element ecA is called an i-identity
(identity) element of (A,c) if for each XcA we have

(e,...,e,x,8,..,,8).=x [Lx,e,....s?,=te,x,....E}==te,..,e.xi,=x]

Definition 1.8. In the n-group (A,=), the seolution of the
equation (a,a,....a,%),=a4a is called the guerelement of "a" (by

Dornte [3]) and it is denoted by = . The element = has the
additicnal property
(Xd, oo a0 o a)mla, ol 8, 0, 8.%) =x
for each xchA.
Proposition 1.1. [3] If (A,°) i&s a semicomnmutative n-semigroup
then it is an entropic n-semigroup.

The converse is not true, for examnple 1 P Bl e T
¥a&.,...,4,fA 1is an entropic n-semigroup but not a semicommutative
one,

Proposition 1.2. If (A,°) is an entropic n-group then (A,=) is
semicommutative.



Proof. For each dy,4..,8,E4A we hava
(8,8, ... a8 =88, ....8,), 3,8, .. S T e
0 IS PRI 15 R - T TR - 0, [ - S Y TP Y E
i@, da,, ..., 8,.4,),),= (by entropy) =
=tlaad . aye..a,a) (a,,8,8, . ..8),..., 14, PR R

fanrf'j_”.- i lliaﬂra‘]]ﬁ]":{anr&_ﬁ_l‘ v -;aﬂ_-_:'ﬂ'}:

Corollary 1.1. If (A,:) 1= a semicommutative h-group, then

(@, . ay =(8,,8,....a,), ¥a,,...,a.c4

v

Froof. By proposition 1.2 we have

{I:al,...,ﬂ”].,,...[d,,-..,aﬁ}‘. I:E'_i'---ra_-‘}-}.; =

[{a1i=ﬂ-;a-:al]¢r----I:.ﬂ”_.-.--;-lin.lsn:lu':'. =

L

={a,,...qa,), , ¥a,...,a,6A , hence by definition 1.8

ii)

T A = Iy, |

Definition 1.9. Let (A,~) be an n-group. A non empty subset B
of A is called a sub=-n-group of (A,7) if the restriction of "=" to

B makes 1t an n-group.
Proposition 1.3. A non empty subset B of A is a sub-n-group of

the n-group {(&,~) if and only if:

g} XA, o0 My ER = (X, X,,...,x,) EH;
2" XEB = XeB .

Definition 1.10. A subset IcA of an n—-semigroup (A,2) is an
i=ideal, ic{1,2,...n}, of & if {A,...,A,I,A,-.,,A}b:I « An i=-ideal
1
of A for all i=]1,2,...,n iz called idegl of (A,=).
Definition 1.11. An element zeA is called a Zero of A if

AT WRPIEY Syl s ¢ AN PP S b SRR TR S -



for every x.,...,X, €A

Definition 1.12. An equivalence relation p of an n-semigroup
(A,=) is called a congruence of the n-semigroup if the relation is
compatible with the n-ary operation "+"; by this we mean

WX, V€A X, PV i=l, ..., 0 = (e oo s Xpd P (¥ee v a3,
In ﬁfp='!§fﬂ!?ﬂ};é‘=lleAf&px} we define an n-ary operation "#n by

(£, &, .. R =, .o x), -
It i= easily seen that
Proposition 1.4. [7] 17 If (&,:) is a semicommutative h—group
and p 18 a congruence of (A,o), then (A p,*) iz a senicommutative

n=group, where the querelement of the equivalence class £ is = :

2" The equivalence class & 1is a sub-n-group (A,=) if and
only if the element acA is 1-identity for (A,=).

5*
then there is a unigue congruence 1]

If H is a sub-n—-group of the semicommutative n=group (&,=},

aplb = {aH...H), = (bH...H),
so that HeA/p and Afp-~A/H;A/H={{xH...H) _:xcal .
4" The equivalence class & is an ideal of the n-semigroup

(A,7) if and only if & is a zeroc in a/p.

2. GENERAL DEFINITIONS AND ELEMENTARY PROPERTIES
Definition 2.1. An universal algebra (R,[],°): []: R~ K
“:R* - R is an (m.n)-dgeneralized ring, m,nel™ (1), if:

=

1 (E,[]) is a senicommutative m-group:

o

2 [(R,2) is an n=semigroup;

L}

4 the following distributive laws hold for all choices of
Ayr@arevaydyedy, .., bR and for all choices of ielr,z,...,n} :
':.-.']1, =0 rlii_-_r I_.le LI -rhu_-] r aii;r s Il&I‘I:I“=

ol B 1 M PRUT - VL. T TR 1 N ¢ SO, .. T R «35).]
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Clearly, an ordinary ring is a (2,2)-generalized ring.

Example 2.1. (R,|],*) where B is the set of real numbers
[1:R*=™ =R [0 200 oo a K] =2 =242, -. L 42y,
s RP-R; (x,.2x,.....%.).=X
iz a (Zm+l,n) - generalized ring.
. L P T
Example 2.2. (z,.,11,= where [Z, B, & =8+n-b+& , &b-ab ime

a (3,2)-generalized ring.
Az in ordinary (m,n)-rings [1], we define the semiadditive
idempotent and the multiplicatiwve jdempotent as an ildempotent

element in (R,[]) respectively in (R,¢).

The element & will denote the semiadditive guerelement of a in

the m=group (R,[]) and the element g will denote - if it exists =

the multiplicative guerelement of "a" in the n=-semigroup (R,0).
Definition 2.2. An element zeR is called a zero of B if it is

a zero of the n-semigroup (R,c¢].

Evidently, if it exists, a zero of R is a multiplicatife and
gemiadditive idempotent. A (m,n)-generalized ring may have at most
one zero. A sSemiadditive and multiplicative idempotent is not

necessarily a zero element; in example 2.1, every acR is a
semiadditive and multiplicative idempotent, but this [(2m+l,n)-

generalized ring has not a zero element.
In the eaxample 2.2, every element of & 1= a semiadditive

idempotent, 0 and I are multiplicative idempotents, and § is
a zero element.
Proposition 2.1. If (R,[].,7) is an (m,n)-generalized ring,

&y, 8y, A ER  then
| - PO U HpL - SRR Ry e IS | A ey |

Proof. Because (R,[]) is an m—-group, by guerelement’s

definition and by distributive law we have

I:li'r---:&irr--ren:ln={'alf-r-f [a;i"'ialrai]i"'F'HI-J:I||=



=!_|:|i|r._-,|ﬂ_.-r...r&r_\,.:':_...-.,{ﬂl,...JﬂJ,...,&an; ':.:31,....,51-,---.,-.1“:',,}
whence (&, ...,d8, ....8,0.=(&,....8:....,4,),
Proposition 2.2. 1" If dps.0 ., i@ R are semiadditive

idempotents of the (m,n)-generalized ring (R,[],2), then

fé,....,a,] 1is an semiadditive idempotent too:

2" If geER 1is an semiadditiwve idempotent then for every

b bR and for each Jell,...,nl the element

(Byeovob;jpanhy,, ..., b)), is an semiadditive idempotent too.

Proof. Indeed, by proposition 1.1 the operatien [] is
entrople, and

= ri e
l [[l\ii_rn--:&m],-r-,[alr---r&m]l;[[i’-:llp-|--pal]:--tJii]wguuufam}]=
=la ;... a]

(B ssebpabcs cvi BamtBesvss by Ly v ayal by
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Il

Definition 2.3. A subset S<R is called an {m,n)-subring
of(R,[],*) if 8 is a sub-m-group of (R,[]) and 8 is closed for the
n-ary operation of R; this means

[5.8,...,5] =5, 55 ,where S=IxeR|xesl and (5.5, ...,9.c8 .

It is easy to check that the set (B,[1:,#) of the (m,n)-subrings
of the generalized (m,n)-ring (R,[],°) is an algebraic closure
system., Consequently, | ${R,[],n},;] is an algebraic lattice.

Definition 2.4. A subset TR i= called an i=-ideal,
1€(l,2,...,n} of R if (I,[]) is a sub-m~group of (R,[]1) and
(RIR"*).cI. If I is an i=-ideal of R for all im]l, 2,...,n, then I is
called ideal of (R,[],2)-

The following properties of (m,n)-rings (see [1],[4]) remain
valid in the case of (m,n)-generalized rings:
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Proposition 2.3. i) The intersection of an arbitrary number of
i-ideals of R is an i-ideal, too.

ii) If I,,I,,...,I, are i-ideals of R, then [T,,I,,...,I,] is an
i-ideal of R.

1ii) Let B,,B;,...,B, be subsets of a ring R and define

':-':E'. d H.d, e J"Elﬂ]_.}={[{'{-Jll""I:'-"I.E‘ s "b]IJ:I LA

=r 'I:.tlpl;j:l‘_u:“ T .l-b;u-_.:l u} |fJ‘E_.|EB.]|.|
P=1 (mod m-1)1

If R 18 a commutative (m,n) generalized ring and one subset (say B,)
is an ideal of R then <(B,,B,,...,B.).> is an ideal too.

iv) I is an ideal of R if and only if T is an ideal
v] If I is an ideal of R then If=(xeR|xcIl is an ideal, too.
Proof. Easy by corollary 1.1 and proposition 2.1,

Definition 2.%. By an j-center (ie{2

sv-a,n}) of an (m,n)-gene-
ralized ring we mean the =et
C; (R) =la€r| (ax™) .= (x;', 2, %) ., Y%, ... x R .
C(R) ﬁ{;{Rﬁ is called the center of an (m,n)-generalized ring.
12

Proposition 2.4. If C,(R) is non-empty, then it is an
(m,n)=subring of (R,[],°]).

Proof. Corollary 1.1.

and proposition 2.1. allow a proof
analogous to the one given by Dudek in [4].

Corollary 2.1. 1) If C(R) is non-empty, then it is a maximal
commutative (m,n)-subring of E.

i1} &n (m,n) generalized ring R is commutative if and anly if
C{R)=R =« C,(R)=C_{R]=R.

Definition 2.6. Let R and R’ be (m,n)-generalized rings. A

mapping £:R - R* is called homomorphism if FlIx,ne.ex])=

I of . S Y ;. B and Filx . ....x).) LELY B SFRRRERS 5 ) B
Yx,eR, iml, ..., max{m, 1)

Proposition 2.5. Let (R,[],*)

+ (R'[1,7) be (m,n)=-generalized
rings and £: R - R’ a homomorphism. The following properties are



immediate:
i) Each semiadditive idempotent of R is mapped by £ in a
gemiadditive idempotent of R':

ii) Ffix}=F(x} :

iii) If f is onto and R has a zero 0, then £(0)=0’ is a zero
in R*;

iv) If 5 is an (m,n)-subring of R, then f(5) is an (m,n)-sub-
ring of R*;

v) If f is onto and 5 i= an (m,n)-subring of R’, then sty
iz an (m,n)-subring of R;

vi) If £ i=s onte and I is an i-ideal of R, then £(I) i= an
i-ideal of R';

vii) If f is onto and I' is an i-ideal of R, then £*(If) is
an i-ideal of R.

Definition 2.7. If f is a homomorphism of a ring R onto a ring
R'having a zeroc 0',we call kernel of f the =zet Kerf={xcR|f(x)=0"}.

Proposition 2.6. The kernel Ker f is an ideal of RE.

Proof. This proposition iz a consequence of proposition 2.5,
(vii)

Proposition 2.7. If T is an ideal in a ring R, then R/1I with
addition defined by proposition 1.4. and with multiplication
definad by

le'-r-r"'FI.lJ"'r [xni-ll-i-l-iIT].ﬁ [f.’fl......}fn_l_,,lr,-..,_f]

is a ring.

Corollary 2.2.The binary relation defined by apb = [a,I,..,I]=

= [b,T,...,I] is a congruence of R such that IeR/p and R/p=R/I.
Note that vwel = [u,I,...,I] = I.
If R has a zero 0, this zero belongs to all i-ideals and also to
@ach ideal. Moreover, the subset of R consisting of 0 alone i= an
ideal denoted by (0) and called the gzerg=ideal. It is the only
ideal of R consisting of one element.

PFroposition 2.8. If R has a zero 0 and p is a congruence of R
then p<0> 18 an ideal of R, and every ideal of R can ba regarded as

the congruence class of 0 with respect to some congruence of R.



a9

Proof. If 0 is a zerc in R, then p<0> is a zeroc in RB/p and by
proposition 1.4., 4", p<0> is an ideal of (R,°); p<0> being a sub-
m-group of (R,[]) we get that p<0> is an ideal of the (m,n)
generalized ring (R,[].2)-

If I is an ideal of R, by 0€I it follows that I=p<0> {(where p

is the congruence defined by corollary 2.2).

3. ON (m,2)-REDUCED RINGS AND (m,2)-ASSOCIATED RINGS OF
AN (m,n)-GENERALIZED RING

Let (E,[],2) be an {(m,n) genaralized ring and u,,...,u _, Fixed
elements of R. Define a binary operation on R

t RXR-8 by xv=ix,u0{",¥, . It is easily verified that this

operation is associative and distributive with respect to the m-ary

cperation [], hence (R,[],*) is an (m,2) generalized ring.
Definition 3.1. If (R,[],=2) is an (m,n) generalized ring, then

{R,[],®) is an (m,2) generalized ring called the reduced ring with
razspect to the element=s u,,...,u0.,€R and dencted by redwﬂtﬁ,lj,ﬂ

Remark 3.1. If w,,u:, ..., 4%, shortly uf - , is a right unit (as

a system of n-1 elements) in (R,[],®), then u., is a right unit in
rEﬂgrziE,[],ﬂl . Tha element u_, is a unit in the (m,2) reduced ring

l'f-:":l‘”;'*'l:.l"fr [1.=) if and only if uf‘_-' iz a right unit and ::ﬂ_luf_H

iz a left unit in the (m,n) generalized ring.

Example 3.1. If (Z,,[],~) is the commutative (3,3) generalized
ring,  where [#, 7, £] - #vd 3+ 2 and (2, 7, &), =Rps then

red: (Z,, [1,¢) 1is a commutative (3,2) generalized ring with the

unit 3 .
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The multiplication takble i=

11538

i| 32134

2] 2@ 3 @

E\EEEE

o) 6 b & B
In the same manner reds{z,, [].7) is a commutative (3,2)
generalized ring and the multiplication table is

* [ & T 2 3

/6 o 6 o

1% 2 % 2

2|0 0 0 @&

¥l 4.2 4 2

We shall give now a ceonstruction of an (m,2) generalized ring

on a covering set of R.

Dafine on R™'=la; ‘|a,eR, i=1,1-1) a binary relation p by:
a; 'pb! e (xal™t), ~{xb®),, ¥xeR . p is an equivalence relation:

denote the equivalence class of &' with {a'} . On the factor

ek

get R*>/p = K, define a binary operation "*" pby:
., A-1 ' 1 ¥ I K
(&™) (B (a0 o B0 )

1t is easily verified that this operation is well defined and it is
associative, hence (R.,-) is a semigroup.

If u’®' is a right unit in the (m,n) generalized ring
(E,[1,2) then the equivalence p defined above coincides with the
relation "-" defined by:

af-;”bl.-:-ﬁ fun-laiﬂ 1]_=|:LE|._, Ibtri 1}-
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Indeed if a''~«h’" then ¥xcR we have
[x.'if"_l}u '—|:I::.JE ul""l]baf'l | ={x uf'z{l.rz - I}]“ =

={'x""1:'._3|["*'n-11Ij_l,ll,}ﬁ"{{x'c‘!f-l}, .-t']_:_l_:l.=[..|=f.biﬂ ] , hence H{J-lpb{kl

The converse 1s obvious.

This remark shows that & =R"1/. and (R.,:) is a semigroup
with the right unit fufd}
Define an m-ary operation on R, (), :R"~E.  by:

(o™ oo oo fam™ ) = lu, @™ iy 0 Al )
It is obwious that this operation is well defined, i.e. it does not
depend on the choice of the represzentatives.

Theorem 3.1. If (R,[],~) is an {(mw,n) generalized ring with a

right unit wuf ' , then
1) (R.,{).,*) is an (m,2) generalized ring with right unit

{u;ﬂ} » called the (m,2) generalized ring associated to (R,[{],=).

2) If u,_uf® is a left unit in the (m,n) generalized ring

Fe-1
(R, f,°), then (R..().,,*) is iscmorphic to redﬂqtﬂ,[];n

Proof. 1) By the definition of the operation ()., by the
distributive law for (R,[],=) and by associativity of the operation
[1 we deduce that the operation (). is associative.

Semicommutativity of the aoperation [1 implies

semicommutativity of the operation [)1,.

H{afi}Eﬂ, the equation

Waf™y, .o far ), (D)) = (ar™) , has the zolution
{2 y=(ay, -1 Bys---,8y,),¥k=1,...,0-1 , which is in faect the

querelement of {(a ) .
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S0, Wwe have &af*;:{al,...,ﬁl,...,ahd},ﬁk=1,-..,n—1 3

V{xI"' )€K, the followlng equality holds in R

(e ty (ol ™y, ey @), = ()

Indeed,
(=)« {ad o{al) @), -
=Il':r'rf_." Hur.--'. fx:J_l.:'a" |.r”=-'_' a'ﬂ.ljl. R 'i‘n-l::'u‘l:un'l" S URRERLTZRR R MY ]}

={u.ﬁ' '{[{uﬂ_l, C ':]_,{uﬂ_l, 4y l}ﬁ, e ,{uﬂ_-_, ar I:',:m].J}=

{.L‘ P | PR 1}} (X .

These remarks show that (R.,().) i= a s=emicommutative m=-group.

By a direct computation one can easily wverify the distributivity

law for * and ()., so (R,().,*) is an (m,2) generalized ring.

2) The mapping f:R-F , fHaf*ﬁ}:{quafdh iz obviously well

defined and one-to-one.

GG B (G O B

(ara2i (a1 o 27 }={{:u. i 1}=
~(lunca™), o 7 (g o B} = (0028 (g0 BT V). -
=£{(al ) LR

R, (Al ) ) =l

X L,ma—1y i m, 31y Ty
_{“H-:l-ﬂ.u RPN | I J.]J:‘
1. n-17

'_H] mp s R1L e e s "{“1 -1 Ri ]}I]_| rl:"r'a"zllln J:}J" _r.f{':,_g“ - l}’ll] -

This shows that f is a one-to-one homemorphism of (m,2) generalized
rings.

If u _.uf° is a left unit, then YycR we have



1z

F:I::I.'I.J_._itif'i}"}“=f|I{:?11:'_21-"};I » Which shows that f is onto.

Example 3.2. Consider the (3,3) generalized ring (%,,[],¢]

-~

defined in example 3.1 and the system 5,3
(Z,,2). The (3,2) generalized ring associated with (2,,[1,7) will

which is a unit in

consist of the folloewing elements

z, =1, ky|Kez,] , where

-

<L, 8>=0(8.6),(0,1).(T.8),(0.3).¢2,08),40,%), (3,87, (5.7, e G
<I,.9»<{(f,.1). (5,5}
<1, Zx={(T,8) . (8, 0),(5.58).435.58]

<. 3>={(1,9), (5.9} .

The multiplication table is:

[ = — — —— =
L
<«i, > <f, 9> <f. 5 <%, 9> “

I <i,0>» <7, 0 1,8 <, 0> <1, 0>

<, 1> <f, 0> <T,q9> 1,5 <1, 5>

<0, 8> <i, B> «f,3> <1,0> T
' <5, 5 <1, 0> T, 5> - 4 o8 B 1
—— -

A a 2 ~ - - - s I
and the addition is defined by (el,d8>,41,b>,<1,5) =<1,d-b+c> .
The mapping f£:{Z,,{),,*)~-(Z,,[],7 defined by

Fi<i, k) =(3,1,K) =3k is a (3,2) ring isomorphism.
Remark 3.2. Theorem 3.1 is alsoc valid in the particular case
of (m,n) ordinary rings having right unit as a system of n-1

alements.
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