Buletinul Științific al Universității din Baia Mare Seria B, Matematică-Informatică, vol.X(1994), 29-38

A FIXED POINT THEOREM FOR MAPPING WITH CONTRACTING ORBITAL DIAMETERS

Vasile BERINDE

The well known contraction mapping principle has been extended in many directions until now. One of most interesting of them consists in taking a generalized contraction condition

$$d(Tx, Ty) \leq a \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$$

instead the classical contraction condition

$$d(Tx, Ty) \le a \cdot d(x, y)$$
,

for a mapping $T:X \rightarrow X$, considered on a metric space (X,d), see [9]-[11], [12], [13], [14], [16] and especially [15].

The aim of this paper is to show that all these results can be reunied in a single one, using concepts as comparison function and generalized ϕ -contraction.

1. INTRODUCTION.

We need some definitions, examples and results from [1]-[8]. Definition 1. A map $\phi: \mathbb{R}^5_+ \to \mathbb{R}_+$ is called comparison function if

- (i) φ(u) ≤φ(v), for each u, v∈R⁵, u≤v;
- (ii) the sequence $(\psi^n(t))_{n\in\mathbb{N}}$ converges to zero, as $n\to\infty$, for each $t\in\mathbb{R}$, when $\psi:\mathbb{R}_*\neg\mathbb{R}_+$ is given by

$$\psi(t) = \varphi(t, t, t, t, t)$$
, for each $t \in \mathbb{R}_+$, (1)

(on \mathbb{R}^6 we consider the partial order relation).

The following are examples of comparison functions (called 5-comparison functions in [8]).

Examples.

1° $\varphi: \mathbb{R}^5 - \mathbb{R}$, given by

 $\phi\left(t\right)=a\cdot\max\{t_1,t_2,t_3,t_4,t_5\}\ ,\ for\ each\ t=(t_1,t_2,t_3,t_4,t_5)\in\mathbb{R}^5\ ,$ where ae(0,1) is a constant.

2° $\phi: \mathbb{R}^5_+ \to \mathbb{R}_+$, given by

 $\phi\left(t\right)=a\cdot\max\{t_{1},t_{2},t_{3},t_{4},\frac{t_{4}+t_{5}}{2}\}\ ,\ t=(t_{1},t_{2},t_{3},t_{4},t_{5})\in\mathbb{R}^{5}_{+}\ ,$ if a\(\in(0,1)\).

3° For $a \in [0, \frac{1}{2}], \phi : \mathbb{R}^5_+ \to \mathbb{R}_+$, given by

 $\varphi(t) = at_2 + at_3$, for each $t = (t_1, t_2, t_3, t_4, t_5) \in \mathbb{R}^5$.

4" For $a,b\in\mathbb{R}_+$, a+2b<1, $\phi:\mathbb{R}^5\to\mathbb{R}_+$,

$$\varphi(t) = at_1 + b(t_2 + t_3)$$
, $t = (t_1, t_2, t_3, t_4, t_5) \in \mathbb{R}^5$.

5" For a∈[0,1], φ:R,-R,,

$$\phi\left(t\right) = a \cdot \max\{t_2, t_3\} \ , \ t = (t_1, t_2, t_3, t_4, t_5) \in \mathbb{R}_+^5 \ .$$

6° Let $a,b,c\in\mathbb{R}$, a<1, $b<\frac{1}{2}$ and $c<\frac{1}{2}$. If, for a certain

 $t \in \mathbb{R}_+, \varphi(t)$ is given by one of the following values

$$at_1$$
, $b(t_2+t_1)$ or $c(t_4+t_6)$,

then the obtained function $\phi:\mathbb{R}^{5}_{+}\!\!\to\!\mathbb{R}_{+}$ is a comparison function.

2. GENERALIZED CONTRACTIONS.

For (X,d) a metric space and T: X \rightarrow X an operator, we denote $F_{\pi} \colon = \{x \in X / Tx = x\} \ ,$

 $\left(T_{x_0}^{a}\right)_{n\in\mathbb{N}}$, the sequence of successive approximations corresponding to the initial approximation x_c ;

$$0(x;T) := \{x, Tx, T^2x, \dots\};$$

 $\delta(A) = \sup\{d(x,y)/x, y \in A\}, A \subset X$.

The following lemmas are generalizations of Lemma 1 and Lemma 2 from CIRIC, L.[9].

LEMMA 1. Let (X,d) be a metric space and T:X \rightarrow X a generalized ϕ -contraction, i.e. an operator for which there exists a comparison function $\phi: \mathbb{R}^5 \rightarrow \mathbb{R}_+$, such that

$$d(Tx, Ty) \le \varphi(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))), x, y \in X$$
. (2)

Then, for $n \in \mathbb{N}$ and any $x \in X$, if $i, j \in \{1, 2, ..., n\}$, we have $d(T_x^i, T_x^j) \le \psi(\delta[0(x; n)]),$

where $\psi: \mathbb{R}_{\cdot} \to \mathbb{R}_{\perp}$ is given by (1).

Proof. Let $x_0 \in X$ be arbitrary taken, and $x_n = T^n x_0$, $n \ge 0$, the sequence of succesive approximations.

From $i, j \in \{1, 2, ..., n\}$ it results $\{i-1, j-1, i, j\} \subset \{0, 1, 2, ..., n\}$, hence

$$x_{i-1}, x_i, x_{j-1}, x_j \in 0 (x; n)$$
.

Then, from the contraction condition (2), we have

$$d(x_{i},x_{j})=d(Tx_{j-1},Tx_{j-1})\leq$$

$$\leq \varphi\left(d(x_{i-1},x_{j-1})\;,\,d(x_{i-1},x_j)\;,\,d(x_{j-1},x_j)\;,\,d(x_{i-1},x_j)\;,\,d(x_{j-1},x_j)\;,\,d(x_{j-1},x_j)\;\right)\;.$$

But

$$d(x_p,x_q) \leq \delta \left[0 \left(x,n \right) \right] \text{, for each } p,q \in \left\{ i-1,j-1,i,j \right\} \text{,}$$

and ϕ is monotone increasing, then

$$d(x_i,x_j) \leq \varphi(r,r,r,r,r) = \psi(r) \; ,$$

where we have denoted

$$r = \delta [0(x;n)]$$
.

The proof is complete.

Remark 1. For each n∈N', there is k≤n so that

$$d(x, T^k x) = \delta [0(x; n)],$$

since

$$\psi(r) \le r$$
, for each $r \ge 0$ (see[1]-[7]).

LEMMA 2. If T: X \rightarrow X is a ϕ -contraction and, in addition, ϕ is such that the function h: $R_- \rightarrow R_+$,

$$h(t) = t - \psi(t) = t - \varphi(t, t, t, t, t), t \in \mathbb{R}_{+},$$
 (3)

is a bijection, then, for any n∈N, we have

$$\delta[0(x;n)] \le h^{-1}(d(x,Tx))$$
, $\forall x \in X$.

Proof. Let $n \in \mathbb{N}$ be arbitrary taken. From remark 1 it results that there exists $k \le n$, such that

$$d(x, T^k x) = \delta [0(x; n)],$$

hence, applying lemma 1, we obtain

$$\delta[0(x;n)] = d(x, T^k x) \le$$

$$\leq d(x, Tx) + d(Tx, T^kx) \leq d(x, T(x)) + \psi(\delta[0(x; n)]),$$

which lead to

$$\delta[0(x;n)] - \psi(\delta[0(x;n)]) \le d(x,Tx), x \in X, n \in \mathbb{N}$$
.

But h is bijective and monotone increasing (because ϕ is also increasing), hence h⁻¹ is increasing too, and the conclusion follows from the last inequality.

3. A FIXED POINT THEOREM FOR GENERALIZED CONTRACTIONS

The main result of this paper is given by the following THEOREM 1. Let (X,d) be a complete metric space and $T: X \to X$ at φ -contraction with φ such that the function ψ given by (1) is continuous and the function h given by (3) is a bijection. Then

(ii) The sequence of succesive approximations, $x_n=T^nx_0$, $n\geq 0$ converges to x^* , for each $x_0\in X$;

(iii) The following estimation holds

$$d(x_n, x^*) \le \psi^n(h^{-1}(d(x_n, x_1)))$$
.

Proof. Let $x_0 \in X$ and $m, n \in \mathbb{N}$, n < m.

We take $i=1, j=m-n+1, x=T^{n-1}x_0=x_{n-1}$ and apply Lemma 1. It results

$$d(x_n, x_m) = d(Tx_{n-1}, Tx_{m-1}) \le \psi(x_1)$$
, (4)

where

$$r_1 = \delta \left[\left. 0 \left(x_{n-1}, m-n+1 \right) \right. \right] \; .$$

Now, from remark 1, there exists k_1 , $1 \le k_1 \le m-n+1$, such that

$$\delta [0(x_{n-1}, m-n+1)] = d(x_{n-1}, T^{k_1} x_{n-1}).$$
 (5)

Using again lemma 1, we obtain

$$d(x_{n-1}, T^{k_1}x_{n-1}) = d(T(x_{n-2}), T^{k_1+1}(x_{n-1})) \le \psi(x_2), \tag{6}$$

where

$$r_2 = \delta [0(x_{n-2}, k_1+1)]$$
.

But $k_1+1 \le m-n+2$ and ψ is monotone increasing, hence, from (4)-(6), we obtain

$$d(X_n, X_m) \le \Psi^2(\delta[0(X_{n-2}, m-n+2)])$$
,

and, by induction, we deduce

$$d(x_n, x_m) \le \psi^n(\delta[0(x_n; m)])$$
.

Now, using lemma 2, it results

$$d(X_n, X_m) \le \psi^n(X_3) , \qquad (7)$$

where

$$x_3 = h^{-1}(d(x_0, x_1))$$
.

But φ is comparison function, hence

$$\psi^n(r) \to 0$$
 , as $n \to \infty$, for each $r \in \mathbb{R}_+$,

which shows, together with (7), that (x_n) is a Cauchy sequence in the complete metric space (X,d). This means (x_n) is convergent. Let

$$x^* = \lim_{n \to \infty} x_n$$
.

We shall show that x' is a fixed point of T. Indeed, for each neN,

$$d(x^*, Tx^*) \le d(x^*, x_{n+1}) + d(Tx_n, Tx^*) \le d(x^*, x_{n+1}) +$$

$$+ \varphi(s(x_n, x^*), d(x_n, x_{n+1}), d(x^*, Tx^*), d(x_n, Tx^*), d(x_{n+1}, x^*)).$$
(8)

If

$$\max\{d(x_n,x^*)\;,d(x_n,x_{n+1})\;,d(x^*,Tx^*)\;,d(x_n,Tx^*)\;,d(x_{n+1},x^*)\;)=d(x^*,Tx^*)\;,$$

then using the monotonicity of ϕ , from (8) we obtain

$$d(x^*, Tx^*) \le d(x^*, x_{n+1}) + \psi(d(x^*, Tx^*)) ,$$

that is

$$d(x^*, Tx^*) \le h^{-1}(d(x^*, x_{n+1}))$$
 (9)

But h^{-1} is monotone increasing, positive and $h^{-1}(0)=0$, hence h^{-1} is continuous at zero. Taking $n \to \infty$ in (9), we obtain

$$d(x^*, Tx^*) = 0 ,$$

wich means $x^* \in F_{\tau}$.

If

$$\max\{d(x_n,x^*)\,,d(x_n,x_{n+1})\,,d(x^*,Tx^*)\,,d(x_n,Tx^*)\,,d(x_{n+1},x^*)\,\}=d(x_n,x^*)\,,$$

then from (8) we obtain

$$d(x^*, Tx^*) \le d(x_n, x^*) + \psi(d(x_n, x^*))$$
,

which yields, in view with the continuity of ψ at 0, and taking $n \rightarrow \infty$,

$$d(x^*, Tx^*) \leq 0$$
,

hence d(x',Tx')=0, that is $x'\in F_r$. Let's remark that if the maximum is $d(x_{n+1},x')$ or $d(x_n,x_{n+1})$, the proof is similar to the previous case. If, finally,

$$\max\{d(x_n, x^*), d(x_n, x_{n+1}), d(x^*, Tx^*), d(x_n, Tx^*), d(x_{n+1}, x^*)\} = d(x_n, Tx^*),$$

then, from (8) it results

$$d(x^*, Tx^*) \le d(x_n, x^*) + \psi(d(x_n, Tx^*))$$
.

Taking $n \rightarrow \infty$ and, using the continuity of ψ , we obtain

$$d(x^*, Tx^*) - \psi(d(x^*, Tx^*)) \le 0$$
,

that is

$$h^{-1}(d(x^*, Tx^*)) \le 0$$
,

which means

$$h^{-1}(d(x^*, Tx^*)) = 0$$
 i.e. $d(x^*, Tx^*) = 0$.

The unicity of the fixed point is proved as follows.

Let $X_1^*, X_2^* \in F_T, X_1^* \neq X_2^*$. This means $d(X_1^*, X_2^*) > 0$ and then

 $d(X_1^*, X_2^*) = d(T^n X_1^*, T^n X_2^*) \le \psi^n (\delta[0(X_1^*; m)]) = \psi^n (\delta(\{X_1^*\})) = \psi^n(0) = 0,$ contradiction.

Now, (i) and (ii) are proved. In order to obtain (iii), we take $n\rightarrow\infty$ in (7).

The proof is now complete.

Remark.

- 1) If ϕ is as in example 1°, from our theorem we obtain a result from CIRIC,L. [9];
- 2) If ϕ is as in example 3°, from theorem 1 we obtain the wellknown Kannan's theorem, KANNAN,R. [11].

THEOREM 2. Let (X,d) be a complete metric space and $T: X \to X$ an operator for which there exists $a \in \left[0, \frac{1}{2}\right)$ such that

 $d(Tx, Ty) \le a[d(x, Tx) + d(y, Ty)]$, $\forall x, y \in X$.

Then

$$F_T = \{\chi^*\}$$
 .

Remarks.

- Theorem 1 gives the same error estimates as in theorem
 1.1 from RUS, A.I. [13], but in the particular case of the Kannan's theorem, our error estimates is slower than the one given by theorem 3.2.1, from RUS, A.I. [12];
- 2) If φ is as in example 4°, then from theorem 1 we obtain a fixed point theorem given by REICH,S.(1971) and RUS,A.I.(1971), see TASCOVIĆ,M. [15];
- 3) If φ is as in example 5°, then from theorem 1 we obtain a fixed point theorem given BIANCHINI, M. (1972) and DUGUNDJI, J. (1976);
- If φ is as in example 6°, then from theorem 1 we obtain a very interesting fixed point theorem established by ZAMFIRESCU,T.
 [16];
- By considering for φ other particular expressions, theorem
 furnishes various fixed point theorems established by: Sehgal, V.

- (1972), Roades, B.E. (1977) and Chatterjea, S. (1972), Hardy, G.E. and Rogers, T.D. (1973), Iseki, K. (1975), Kurepa, S. (1976), Ćirić, L. (1971) and many others, see TASKOVIĆ, M. [15] and RUS, A.I. [14];
- 6) Theorem 1 in our paper extracts the unifying principle for all these fixed point theorems, that is

$$\psi(t) = \alpha t , 0 \le \alpha < 1,$$

whith α adequate chosen, for any comparison function ϕ satisfying the conditions of theorem 1.

For example, for φ as in example 3, α = 2a<1, for φ as in example 4, α = a+2b<1 for φ as in example 5, α = a, and for φ as in example 6, α = min(a,b,c);

- 7) If T: X → X is a contraction then T is continuous, but if T is a generalized φ-contraction, T is generally discontinuous, see ĆIRIĆ,L.[9] or RUS,A.I.[14];
- 8) A similar result to theorem 1 in this paper is given in RUS,A.I.[14],theorem 1, where ψ satisfies a weaker condition but ϕ is claimed to satisfy stronger conditions then those in our paper.

REFERENCES

- 1.BERINDE, V., Error estimates in the approximation of the fixed points for a class of φ-contractions, Studia Univ. "Babeş-Bolyai", 35(1990), fasc.2, 86-89
- 2.BERINDE, V., The stability of fixed points for a class of φ-contractions, Seminar on Fixed Point Theory, 1990, 3, 13-30, Univ. of Cluj-Napoca
- 3.BERINDE, V., Abstract φ-contractions which are Picard mappings, Mathematica, Tome 34(57), N°2, 1992, 107-112
- 4.BERINDE, V., A fixed point proof of Maia type in K-metric spaces, Seminar on Fixed Point Theory, 1991, 3, 7-14
- 5.BERINDE, V., Generalized contractions in uniform spaces, Bul.Şt. Univ. Baia Mare, Fasc. Matematică-Informatică, vol.IX (1993), 45-52

- 6.BERINDE, V., Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3 (to appear)
- 7.BERINDE, V., Error estimates for a class of $(\delta, \phi$ -contractions), Seminar on Fixed Point Theory, 1994, 3 (to appear)
- 8.BERINDE, V., Generalized contractions and applications (Romanian), Ph.D.Thesis, Univ. of Cluj-Napoca, 1993
- 9.CIRIC, L.B., A generalization of Banach's contraction principle, Proc.Amer.Math.Soc., 45(1974), 267-273
- 10.CIRIC,L.B., A note on fixed point mappings with contracting orbital diameters, Publ.Inst.Math., 27(1980), 31-32
- 11.KANNAN,R., Some results on fixed points, Bull.Calcutta Math. Soc., 60(1968), 71-76
- 12.RUS,A.I., Metrical fixed point theory, University "Babeş-Bolyai" of Cluj-Napoca, 1979
- 13.RUS, A.I., Generalized contractions, Seminar on Fixed Point Theory, 1983, 3, 1-130
- 14.RUS, A.I., Some metrical fixed point theorems, Studia Univ. "Babeş-Bolyai", 24(1979), 1, 73-77
- 15.TASKOVIC,M., Osnove teorije fiksne tačke, Matematička Biblioteca, Beograd, 1986
- 16.ZAMFIRESCU,T., Fix point theorems in metric spaces, Arch. Math. (Basel), XIII(1972), 292-298

Received: February 24, 1994

UNIVERSITY OF BAIA MARE
DEPARTMENT OF MATHEMATICS
4800 BAIA MARE
ROMANIA