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Differential Equations with Deviating Argument
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Abstract !

In the paper sufficient conditions ore found under which for all oscillatory so-
futions of the equation

(rit)e' ()] + ald)f (o (gt} = bid),

there iz lime oo pit) = 0 . Sufficient conditions are also found so that oll 20lu-
tions of this cquation arve unbounded,

1. Introduction

The second order differential equation of the form
(1) (r{t)y' (1)) + alt)y (g(t]) = f£(£)

15 investigated in the paper [4]. Sufficienl. necessary and sufficient conditions are found
under which all oscillatory solutions of the cquation (1) approach zere asymplolically,
Suificient conditions are also found so that escillatory solutions of (1} must be nmbounded,
Proofs of the Theorems 1 and 9 in the paper [4] are not correct, entirely.

We will investigate differential equation of the form

(2) (r{#hy' (1) + alt]f (y (a())) = B(F).

The aim of the paper is to complete and lo generalize some results for the eguation
(4] as well as to remove incorrection of the Theorerus 1 and 9 from the paper [1].

'Hey words: Oscillatory, nonoscillatery, asymplotic, onbonnded.
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2. Definition and assumptions

It will be assumed for the rest of the paper thal
r(1), a(t), &), g{t), fit): K — R are continuous ; /i iz a real line,

{1)
{11) Tl:fj =0, g(t) =0, git) = = asl - oo, glf) <1,
{111 () =1 Jor w4,

The function y(t) € Clly, oo} is called oscillatory if it has arbitrarily large zeros in [iy, o).
(Mherwise y(t) is called nonoscillatory. In this paper we investigate only solution of (2
which are defined Tor all £ 2 4 .

3. Main Results

Theorem 1.

Suppoas
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(5} f|i!:r,f]| pltidt < oo,
iy
Td
where plt) = f —Sﬁ .
e r{a)

Then all bounded oacillatory solutions of (2) approach zero azt — oo |

Proofl. Lel y[ﬂ e & boundesd :m::l]iiﬂ.urll.-' solution of the coualion [2] and

{6 limsup |y(t)] = d = 0.
0
Then there exiats K = | such thal |g{t]]| < K, lar{g(i))] < K for all ¢ = ¢, .

Put L = maz.eg x| fizll - Let 47 2 T = iy be such that g{T1) =0, g(t) > T for all

{2z T and

f
(7 fmm pltdt < ;—L
J

L



, T d
(8] f ol < £
T

where 0 < d < dy . It follows from (6} that there exist numbers #3 = &g > 1, = T} such
that g{z)) = ylag) =0, lpiza)| =M > d, yiz)| < M for all £ € |2, 2] Integrating (2)
from @p Lo § € [zg, 53] we have

* %
(9) (0L} |fu[f],r[y[gmmr:fh(:}f:x
henee
B 1 T I3 1 t
~y(eo) = - [ 2 [atoutatenasds + = [erdsa
anrl
a i e t
{10) M= f%“f|n{f\||f{y[g[r‘l]l”rf:rrﬂ [ [%f“ﬂi:ﬂrﬂzrﬂ.

As |u{q[:.::|}| < W for all @ £ |..'.'.'|_|._J‘I.:.| . Trom relation IZH'I} irlhrn:]lung'iug mlegration order
and ntilizing (7], {8) we have

d 4

d= M= —4 -,

= -1 A4

This contradiction {d # ) completes the proof of the theorem.

Theorem 2.

Lot the essumptions of the Theorem [ be zafiafied. furthermore we suppose
there exisls o pasilive constant o such that

(11) flu)| = exfue| .
Then all ascillatory selutions of 2] approach zerve ast — oo |
Proof. Since the conditions of the Theorem 1 are satisfied, we only need to prove that

the equation '-L'E:' has not any unbounded oscillatory solution.
Let y(t) be an oscillatory solution of the equation (2} such thal

{12) i sup it = oo .

TE



2]

Let I = T = {5 be such that 9{}) =0, g(¢) = T for every ¢+ = T and

[ i
(13} f|rz[|!‘_||p{.r_;..-# < —
dox
T
aned
p
g ]
(14] ff;[fj-pmdﬂ il
i

Since y(t) satisfies (12), there are numbers & = g = &, = T such that yiaz) = yla) =10
()] < M, [y(g(t))] < M for t € [e1,25] , M = lg(za)] s M > 1.
Then from (10) interchanging inlegration order and utilizing the condition [11) we get

Tz £
M < f::[|u[.f:||lr1{.ﬁ]|3';{g{£]]:r?'t -I—f||'1{'.t]|p|;t:|d3 :
Zu i

which gives
1 1
R '
ST

This contradiction completes the proof of the theorem.

Corollary 1.
Suppose (3) 711) and
{13) f|u{ﬁ]|di < 0D,
{16) f,&[.tﬂri'f < 00 .

Then all sscillalory solelions of Whe equalion (2) approach zero as t — o0

Proof. Tha pnmr [ollows Tromm the Theorem 2 sinee with reRpect to |:l.3:| and f]l’_’r} the
conditions {4) and {3 are fulfilled.
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Remark 1.

If flu) = u, the Theorem 2 iz identical with the Theorem 9, as well as the
Clorollery 1 wilh the Theorem 1 in the paper [§] . We remark that the proof
of the Theorem T as well as thal of the Theorem 9 is not quite correct, since
generally we cannol affirm the erislerce of the numbers 7' = T, = Ty = T
such that g{7Ty) = 0 and maz{|p(l)]|: T <21 <1 = p(1")] = d > 0 (zee 1]
p. 199) for every oscillatory function y(t) such that

litn sup |gl{{)]| = o = 0.

L

Namely, in the conerete, if we have e.g.
. | ,
(i) = ok sint ,
then the condition is not zafiafied.
It applies only in the case when limsup,_ \5{t]| = =¢c , a0 in the paper [1] there is
essentially only the proof of the assertion, that all escillatory selutions of the equation (1)
are bounded,

A it 1% seen from the assertion of our Theorem 2 and Corollary 1 the assertions of the
Thearem 1 and % in Lhe paper [4]| are correct, and the gap in proofs can he corrected,

Theorem 3.
Suppose ﬂI:f:I = ay[L) + ay(l) , ay(t) =0, 't—m- is bounded for t — o |

c(1)
m i1
[:].I__I frf.]fﬂ = 2,
3 4]
im o

[ I P I:'“‘[ﬁ::'

aid s

19 f{.!-llzf:lcf.! e N

Then all solulions of the equation (2] are unbounded.

Proof. Fram the equation (2] we have

(el e agit) oy g bit)
. B b fladg())) = ——= ,
ml:H ' (1 “l':t]) flgtalt))) aplf)
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which gives
. (g ()Y TR

(20) (r{t)s( N L]

apit] iy}

If »it) is a bounded solution, then from the last relation we set that there exists a

conatant &7 = 0 such that

(' (L)) = Kiagt)  forevery  t 4.

From this relation we get

(1 4 k)| fla(a(2)))] -

E;

(21} P(EW() = {6 )y'(t) + K f a(3)ds

¥

which gives a conlradiction with respect to (19) and {17). The proof is complete.

Remark 2.

Ifrit] i @ bounded function, a1(t) = p = 0 and f{u) = u then we get the
Thearem 6 in the paper [1].

Theorem 4.

Lel the wssumplions of the Theorem 3 be aatisfied, whereby instead of (17) and
(19) there is (3] and

1x1

[22] [m[t}p{t]cﬁ = 0.
Then ol solutions of (2] are unbounded.

Proof. Il yit) is a bounded solntion of the equation (2}, then from the relation (21} we
get

]
-

" " b f 1 3 : = Al
y(t) = it )+ vt w'ih) ’rmfh«‘ + K fu][.ﬂj;J{H}d.e

S

i 4]

which gives a contradiclions with respect to (3) and (22},

Corollary 2.

Let the assumptions of the Theorem 3 be satisfied, whereby dnstead of (18] we

Suppose
Co L |E)
(23) it A

i rI-|_I:|']'
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Then the equalion (2] has notl any solulion epprosching zero as t — o

Proof. Let y(t) be a solution of the equation [2) such that limy_.. y(t) = {l. Then from
the relation [20], with respect Lo propertics of lunction f{u] we gel

i d |
(rithy'(t)) = et for every =iy,

We get a coniradiclion H.]IH.'.IZ.I-"G‘ULLH to the Theorem 3. It s clear that 1he Corol |+11':r' 3

applies,

Corollary 3.

Let the assumplions of he Theorerme 4§ be solisfied, wherchy we sappose (23)
instead (18). Then the equation (2] s ol aniy aodution approaching zero 0
b — DO .

Theorem 5.

Suppose (4] and
(24} fm;f,]ps'.s'me o

Then all solutions of the equalion (2] are unbounded.

Proof. Let y{f) be a bounded solution of the equation {2). Then from the equation (2)

wir havve

1 t
(25} F(U' (L) + et 't )] + K [|:I{3]|-:fs;=' f&[s']dﬂ_.

.Il

I".IZ":['I{ZIZ:'

d ! El L L
i 1 1 : i 1
y(t) — wit) + [~ w2y fmds—kﬁ';/rl-lisjf|rz[.:':}|d:|:rf.'-..-_* fmfﬁ{:jehdh
1."_ : ':I. 41 ) e &

Fram the last relation we have

lim yit) = K.1+fbff]FU]"ﬂ.~
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which is a contradiction since y(1) is bounded.

Corollary 4.
Suppose (15), (17) and

s

{24 fh{.'.]rﬂ = oo

Then all solulions of the wmaktion (2] are unbounded,

Proof. If yii)is a bonnded solution of the equation {2), then from the relation (25), with
respect to {26) and (15) we get, that r{£)y'(t) = Ky = 0 for every { = &, | which gives
a vonlradiction with respect to (17}, since y(1) s bounded. The proof is complete,

Theorem 6.

Suppose (3), 4], (11 and §1) = 0 . Then {5 is necessary and suflicient con-
dition in order thol all pscillalory solulions of the equation (2) may approach
rero ast —oC .

Proof. I (5] applies, then the conditions of the Theorem 2 are satished, and so all

oacillatory solutions of the equation (2} approach zero as ¢+ — oo .
Now we are going to prove that (3] is a necessary condition, 5o all oscillatory solulions
of the equation {2) approach zero as t — 20 and (5) does not apply i lel

o

jl’.llfi]p{.'.}ri'! —oa

Then the conditions of the Theoremn 5 are satisfivd and so all solutions of the equation
(2] are unbounded which gives a contradiction. I's proves the 1heorem 6.
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