Buletinul Științific al Universității din Baia Mare Seria B, Matematică-Informatică, vol.X(1994), 73-78

ON A HOMEOMORPHISM THEOREM

Vasile BERINDE

1. INTRODUCTION

In most applications of the fixed point theorems the ambient complete metric space is actually a Banach space. Because of this richer structure, a generalized contraction principle leads to a result especially useful in applications, as in the case of contraction mapping principle [6].

In this paper we give a generalization of the following homeomorphism theorem due to DUGUNDJI and GRANAS [6], Corollary 2.2.

THEOREM 1. Let X be a Banach space and $f: X \to X$ a contraction, i.e. a mapping for which there exists a constant a, $0 \le a < 1$, such that

$$||f(x)-f(y)|| \le a \cdot ||x-y||$$
, for each $x, y \in X$.

Then l_x -f is a homeomorphism of X onto itself. To this end we need some definitions, examples and results from BERINDE, V. [1]-[5], RUS, A.I. [7], [9].

2. GENERALIZED CONTRACTIONS

Definition 1. (BERINDE [1]) A function φ : \mathbb{R} , \to \mathbb{R} is called (c)-comparison function if the following two conditions are satisfied:

- (C1) φ is monotone increasing;
- (c_2) There exist two numbers, k_0 and α , $0 \le \alpha < 1$, and a convergent series with nonnegative terms $\sum_{k=1}^{\infty} a_k$, such as

$$\phi^{k+1}(t) \leq \alpha \phi^k(t) + a_k$$
 , for each $t \in \mathbb{R}_+$ and $k \geq k_0$,

 $(\phi^k$ stands for the k iterate of ϕ).

LEMMA 1. (BERINDE [1], [5]) If φ is a (c)-comparison function then

- (c,) φ(t)<t, for each t>0;
- (c.) \u03c3 is continuous at 0;
- (c:) The series

$$\sum_{k=0}^{\infty} \varphi^k(t) \tag{1}$$

converges for each t∈R;

- (c_s) The sum of the series (1), denoted s(t), is monotone increasing and continuous at 0;
 - (c,) (φ (t)) converges to 0, as n→∞, for each t∈R.

Remark. A function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfies (c_i) and (c_7) is called comparison function (see RUS, A.I.[8]).

Exemple 1. If $a \in 0,1$), then $\phi \colon \mathbb{R}_+ \to \mathbb{R}_+$, $\phi(t) = at$, $t \in \mathbb{R}_+$, is a (c)-comparison function, hence ϕ is a comparison function too. But there exist comparison functions which are not (c)-comparison functions. Indeed, $\phi \colon \mathbb{R}_+ \to \mathbb{R}_+$, $\phi(t) = \frac{t}{1+t}$, $t \in \mathbb{R}_+$, is a comparison function which is not a (c)-comparison function.

The importance of (c)-comparison functions consists in the fact that in a genralized fixed point principle with respect to a (c)-comparison function, the error estimates of the fixed point may be given in a similar way to the one in the classical contraction mapping principle, see BERINDE [1]-[5], as shown by

THEOREM 2. Let (X,d) be a complete metric space and $f\colon X\to X$ a φ -contraction, that is, a mapping for which there exists a comparison function φ such that

$$d(f(x), f(y)) \le \varphi(d(x, y))$$
, for each $x, y \in X$.

If ϕ is a (c)-comparison function, then

- 1) $F_f = \{x^*\} (F_f = \{x \in X / f(x) = x\})$;
- 2) If (x_n) is the sequence of succesive approximations, defined by $x_n=f(x_{n-1})$, $n\ge 1$ and $x_0\in X$, arbitrary taken, then (x_n) converges to x^* .
 - 3. The error estimates is given by

$$d(x_n, x^*) \le s(d(x_n, x_{n+1})), n \ge 1$$
.

Remark. For $\phi=\alpha t$, $0\leq \alpha < 1$, from theorem 2 we obtain the classical contraction mapping principle. If ϕ is a comparison function rather than a (c)-comparison function, then only the statements 1) and 2) of theorem 3 hold.

Definition 2. (RUS, A.I. [8]) Let (X,d) be a metric space. An operator $f: X \to X$ satisfying the following conditions

- (i) There exists x*∈X , such that F_f={x*};
- (ii) The sequence $\left(f^n(x_0)\right)_{n\in\mathbb{N}}$ converges to x^* , for each $x_0\in X$, is called Picard operator.

If $F: X \to X$ is a Picard operator and the corresponding field $f=1_x-F$ is a homeomorphism, then F is called Banach operator.

Remark. Theorem 2 shows that any ϕ -contraction is a Picard operator.

3. HOMEOMORPHISM THEOREMS.

The generalized contraction principle (Theorem 2) has an useful local version that involves an open ball B in a complete metric space X and a φ -contraction of B into X which does not displace the center of the ball to far:

LEMMA 2. Let (X,d) be a complete metric space and $B(a,r) = \{x \in X/d(x,a) < r\}$.

Let $f: B \rightarrow X$ be a φ -contraction, with φ a given comparison function.

If the following condition

$$d(f(a), a) < r - \varphi(r)$$

is satisfied, then f has a fixed point.

Proof. Since φ is a comparison function, φ is a continuous at 0 and hence the function $h: \mathbb{R}_+ \to \mathbb{R}_+$, $h(t) = t - \varphi(t)$ is continuous at 0

too and h(0)=0. This means that we can choose ε<r such that

$$d(f(a), a) \le \varepsilon - \varphi(\varepsilon) < r - \varphi(r)$$
.

Let's denote $\overline{D}(a, \varepsilon) = \{x \in X / d(a, x) \le \varepsilon\}$.

The conclusion of lemma follows now from Theorem 2 applied for the mapping g, the restriction of f to $\overline{D}(a,\epsilon)$.

Remark. For $\varphi(t) = \alpha t$, $0 \le \alpha \le 1$, from Lemma 2 we obtain Corollary 1.2, DUGUNDJI and GRANAS [6].

Definition 3. Let E be a subset of a Banach space X. Given a map $F:E \to X$, the map $x \mapsto x-F(x)$ of E into X is called the field associated with f, and is denoted by the corresponding lower-case letter: f(x)=x-F(x). The field $f:E \to X$ determinated by a generalized contractive map $F:E \to X$ is called a generalized contractive field.

THEOREM 3. (Invariance of domain for generalized contractive fields). Let X be a Banach space, $E\subset X$ open, and $F\colon E\to X$ a φ -contraction. Let $f\colon E\to X$ be the associated field, f(X)=X-F(X). Then

- (a) f:E→ X is an open mapping; in particular, f(E) is open in E;
- (b) f:E → f(E) is a homeomorphism.

Proof. To show that f is an open mapping, it is enough to establish that for any $a \in E$, if $B(a,r) \subseteq E$, then

$$B[f(a), r-\varphi(r)] \subset f[B(a,r)]$$
.

For this purpose, choose any $y_0 \in B(f(a), r-\phi(r))$ and define $G: B(a,r) \rightarrow X$ by

$$G(y) = y_0 + F(y) \ , \ y \in B(\alpha, r) \ .$$

Then G is a p-contraction and

$$||G(u) - u|| = ||y_0 + F(u) - u|| = ||y_0 - f(u)|| \le x - \phi(x)$$
.

So, by Lemma 3, there is an $u_o \in B(u,r)$ with $u_o = y_o + F(u_o)$, that is, $f(u_o) = y_o$. Thus,

$$b[f(u), r-\varphi(r)] \subset f[B(u,r)],$$

so $f:E \to X$ is an open mapping and, in particular, f(E) is open in X. To prove (b), we observe that if $u,v\in U$, then

$$||f(u)-f(v)|| = ||u-v-(F(u)-F(v))|| \ge ||u-v|| - ||F(u)-F(v)||$$
.

But

$$||F(u) - F(v)|| \le \varphi(||u - v||)$$
,

hence

$$||f(u)-f(v)|| \ge u-v||-\phi(||u-v||)$$
,

so that f is injective. Indeed, if f(u)=f(v), then we obtain

$$\phi(||u-v||) = ||u-v||,$$

which implies, in virtue of (c,) and (c,),

$$|u-v|=0$$
,

that is, u=v.

By the same condition (c_i) it results that any ϕ -contraction is a continuous mapping, hence F is continuous.

This means $f: U \rightarrow f(U)$ is a continuous open bijection and therefore it is a homeomorphism.

The proof is now complete.

THEOREM 4. Let X be a Banach space and $F:X \to X$ a φ -contraction. Then the associated field f=I-F is a homeomorphism of X onto itself.

Proof. In view o theorem 3 we need to show only that f(X)=X, that is, f is surjective. Given $y_0 \in X$, define $G: X \to X$, by

$$X \rightarrow Y_0 + F(X)$$
.

Then G is a ϕ -contraction, so it has a fixed point $x_0=y_0+F(x_0)$, that is, $y_0=f(x_0)$.

Remark. Theorem 4 shows that any φ-contraction defined on a Banach space is a Banach operator. This result consists an answer to the problem 9.2.1(a), RUS, A.I. [8]. Finally, let's observe that all results of this paper hold if we replace the metric space by a K-metric space and the Banach space by a K-normed Banach space, see BERINDE, V. [3]-[5].

REFERENCES

- 1.BERINDE, V., Error estimates in the approximation of the fixed point for a class of φ-contractions, Studia Univ.Cluj-Napoca, XXXV(1990), fasc.2, 86-89
- 2.BERINDE, V., The stability of fixed points for a class of φ-contractions, Seminar on Fixed Point Theory, 1990, 3, 13-20
- 3.BERINDE, V., A fixed point theorem of Maia type in K-metric spaces, Seminar on Fixed Point Theory, 1991, 3, 7-14
- 4.BERINDE, V., Abstract φ-contractions which are Picard mappings, Mathematica, Tome 34(57), N°2,1992, 107-111
- 5.BERINDE, V., Generalized contractions and applications (Romanian), Ph.D. Thesis, Univ. Cluj-Napoca, 1993
- 6.DUGUNDJI,J., GRANAS,A., Fixed point theory, vol.I, Monografie Matematyczne, Warszawa, 1982
- 7.RUS,I.A., Some metrical fixed point theorems, Studia Univ. Babeş-Bolyai, Mathematica, 1, (1979),73-77
- 8.RUS,I.A., Generalized contractions, Seminar on Fixed Point Theory, 1983,3,1-130
- 9.RUS,I.A.,Generalized φ-contractions, Mathematica, Tome 24(47), N° 1-2, 1982, 175-178.
- 10.RUS,I.A., Principii şi aplicații ale teoriei punctului fix, Ed.Dacia, Cluj-Napoca, 1979.

Received: February 15, 1994

UNIVERSITY OF BAIA MARE
DEPARTMENT OF MATHEMATICS
4800 BAIA MARE
ROMANIA