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In what follows, the following conditions will he required:

(2} xgi(t,2) > 0 for e # 0and ¢ e /;
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There exiata a positive function fa € € Ra), such that
(3) filtie,n) = fale,g) in Dy and
zyga(w) < ' fulx, g} for =,y & Ry

(1) Caly) — oo for |y| — oo
)] whiliz, ) = 0in Py
(6) g2(w) = 0, fajz)>0in B;.

We will use the following definitions and propoaitions,
Lt i) = @it tq, o) denote a solution of the syslem

N
: TER., t€], fit,ele CIx &) through =4 at 1 = .

DertxiTion 1. The solutions of (T) are uniformiy bounded if for any
[tl.'h ﬂ:l ':: f e -E] E.Ilifr't' ET!IR?S‘ .':i = ﬁ[f}} ] n Igur-!h “:ll'.li I:r'l'.ll { . I:mpn.!':im'
It to, wa)| < Har) for every t > 1.

Prorosirion 1. (see [2]) Let there cxist continuous function Vit,r)
and Wilz), i=1,2 in T = R, such that the Jollowing condifions hold:

L D<Wile) < Vit,z) < Walz), Wilz)— s, |z — oo

Y a1
2 Vita)= 2+ ;—rf(i::] < 0.

Then the solutions of (7] are unifermdy bounded for § = 0.

DEFINITION 2. {see [2]) A point = € K, iz called an w-Hmit ot af
a sovition gt of the sysiem (T) if there erists a sequence {ta )=, © I suek
that @ily) — =, 1, — 00, 1 — 20,

DEFINTTION 3. (see |2]) The sel of all w-limil paints ef solution 21
i¢ called the it sel of a aolution o1y, This sel will be denoted by ).

LprisrTion 4, (see [3]) A function Vit, ) is called wniformiy
sral! if there erists o condinutous, postisvely definite function Wiz) such that
Vig,z) < W{(z)in fx R,.

PROPOSITION 2. (see [3]) If there exists a positively definile uniform.
fy small function Vi, z), which has a negalively definile derivative with
respeet Lo b, then the trivial solution of the systemn (7] i5 uniformly asymp-
tolically stable,



Bl

ProposiTion 3. (see [2]) Let the assumptions of Propazition 1 be
Fulfilled, Moreover, suppose that the function on the righl sides of the system
(T} are bounded in T Q, where Q © R, i any compact sct and there exisks
o conlinuous function Wiylz) such thai

Vit x) < -Waiz) <0, indx R,
Then
olt) = {o: || < 8, Wale) = 0}, #— oa,
where the constont 3 45 az in Oefinition 1.,
DEFINIrion 5. (see [1]) The trivial solulion of the system (T) is

called glebally asymptotically stable if is asymptoticelly siable and all so-
buteore ol L, @a) of the systern (7) converges to zero as | — oo,

THEOREM L. Suppose thal the assumptions {(2)-(6) and the following
conditions are satisfied;

(%] yelt, o, y) 20 in Ly
it ]
{%) ﬂg}”iﬂ in fh;
{10 There exist functions p, € C(R)), { = 1,2 such that

zpdc) =0 (i=1.2) forz#0

dereed
pilE)| < gt 2) < |pe(2)|  in Dy,

whene
I
Fi(z) = I(,mf.s‘,lda' roe for |z — mo,

[}

Then the solutions of (1) are uniformly dourcded for £ 2 0.

Proor. For any solution (x(2), y(1]) of {1} and a positive constant & we
define
Tty = Fale) + Gillyz) + Galg)l+ K in Ly,

By (2], {6) and (10) we get

U< Wilr,y)=HRAlz)+Gp)+ K < V(L z,y) < Fa(r)+ Fl2) L Gy + K
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(where Fp(x) = [ pois)ds)in Dy, From (4) and (10 it follows
0

Wile, y) — 2o for 2| — o0 and | = =a.

Differentiate the function V(1) = V{1, o(t). y(t)) with respect to ¢. Using
(2], {3), (5}, (6) and {9} we obtain

E

23]
This means that all conditions of Propasition {1 ) are fulfilled, therefore the
solutions of (1) are uniformly bounded for £ > 0. This completes the proof,

(11) Vi) < (zy R ) Alz) <0 in Dy

ConoLLaiy 1. Lol the hypotheses of Theorern 1 haold.
Then the tronal solultons of (1) iz uniformdy asyrmplolically stable.

Proor. From (2}, (8} and (¥} it follows g{6,0) = 0, k{t, 2,0 = 0 and
e(t,#,0) = O for { € F and = € RBy. This means that {1) has the trivial
solution. For any solution (=(#), (1)) of {1} we define

Vit,o.¥) = Fa(z)+ Guly) + Ghit, ) in Dy,
By (2], () and {10) we get
Vilz,g) = Falz) 4+ Galy) < Vit 2,10 < Folx) + Galy) + Pa(z) = Va(a, 3)
in fiz, where ¥i(x, 3] > 0 for every (=, y¥) # (0,0) and V,(0,0)=0,i = 1,2,
This means that the lunction V{{, z,y) is positively definive and by Defini-

tiom 4 it is unifarmly amall. Differentiate the function Vit) = V{t, 2(1), i)
with respect Lo I, using (3}, (6) and {11} we obtain

f i a .
vity< (49 - fue ) ) foe) = ~Walz, 1) <0 in 0,
galy)
Y
where Walr, p) = (,I’_-:,f;-:‘, y]m ;J:y) fz{z}. This means that the function
F

V[, 2, y) ie negatively definite, henee by Proposition 2 Lhe proof is finishad.

THEOREM 2. Suppose thal the azsumptions (2], (4)-(6), (0}, (10}
aid the folloudng conditions are solisfied:

(12) gz € CY Ry} and giiylsgny >0 forg ¢ Ry
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(13) There exists a positive function fr € C(Ry) such that
Hhitr, ) > filz,y) in Dy
[14) There exists nonnegalive fonctions r € OV such that
o

1
et )l < glulr(t) and [ e(tpdt = gy < o=
il

Then the selutions of (1] are uniformly bounded for @ = 0.

Proor. For any solution («{t), 5(t)) of (1] and a positive constant K we
define
Vit,o,y) = e PGt o)+ Gu(y) + K) i D,

where Rit) = jr{s]-r:!’.:r. By (2], (10} and {14) we get

(1]
0 < Wiz, y) = e M (P2} + Galy) + K) € V(t,2,9) <

<)+ Gyl + B = Wz, y) in Iy

and by (4} and (10}, Wiz, g} — oo for || — oo, |g| — oo, Differentiate
Vit) = V2, 2(t), g(t)) with respect to L. Using (5), {6), {9), {13) and (14)
we obtain

2
{15} VL) < —-r{8)V () + F (ll‘{f:l—f;.[:r}yjlf-g{f_l) Rt}
gaiy) \2

Since

oy b~ e b AT
G2y = ot '-*nf s

far y € Ry, by (2), {6}, (12)-(14) and (15) we get

=
(16 Vi) € —e T :riy“' fale, ) falx) <0 in Dy

We have proved that all conditions of Proposition 1 are fulfilled, therefore
the solutions of (1} are unilormly bounded for ¢ = 0. This completes the

proof.



COROLLARY 2. Let the assumplions of Theorem 2 be falfilled, Then
the trivial solution af (1] i# aniformly asypmptotically stable.

Proor. From (2}, (53] and (14) 1t follows g {8,0) = 0, k2, 2,0} = 0 and
eft,x,0) =0 fot € I and r € Ry, This means vhat (1) has the trivial
solution, For an arbitrary solution (=(t), 9(t)) of {1} we define

Vit y) = e MG (1 2) + Galy)) in Dy,

:

where Rt} = j-r[.q}rf.q- By (2}, (10) and (14) we get

LEa

il
Vi, p) = e ™ (By(e) + Galp)) < Vit o.y) € Palr) + Galy) = Valz.y)

in £33, where Vi{0.0) = 0 and Viz, v} = 0 for (z,9) £ (0,0), ¢ = 1,2 This
means that the function V{t, £, y) is positively definite and by Definition 4
it is wniformly small. Dillerentiating the fanetion V() = V{t,c{l),9{1))
with respect to f, analogously as in the proof of Thearem 2 we get

2

Vig) < —e P 2 piz inflz) = —Walz, 1)< 0 in D,
f2(9]
With respect to Proposition 2 the proof is complete.

TuEOREM 3. Let the conditions of Theorem 1 be fulfilled, Moreover,
suppoze that the following condilions held:;

For any pestlioe constand ¢ there exisl @ postive constant i
such that gy (2, 21) ~ g1(lzz)| < K|z — zg|  for 2] < 2,

W s et a e [l e K - Fi AN K
Jor |zl <c, lg|<coandl € I;
Foar any positive constant ¢ and 2,3 € C[1)
i+l
{18} _II' Rla,z{a).ylallda — 0, *— oq,

4

where |21} < r and |y(E)] < c.
Then for all solations (o{L), 40 of (1) {={t),a{t)} — (0,0} fort — o,

Proor. By Theorem 2 every solution {(2), y(2)) of (1) is bounded in T,
i.e, there exists a positive constant ¢ such that |2t < ¢ and |p(t) < ¢ for
i £ I. Therefore the set

A={(z(t)hy(tD: |e(t) <e, [p(t) €ec, tEL}C By
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ia compact. By {6}, (10), (14}, (17) and {18) the right sides of {1) are
bounded in £ x A. Heoee, by (16) and Proposition 3 we have

y!:"
m{y}fﬂ::ﬁﬂs[m,y} =0}

for t — oo, i.e. the w-limit set (x(t), y(L)) is a subset of L. From (6) and
(L3) it follows

(e, y(1)) = L= {lrp): |zl < e, [y <o,

= {[.313'_]: le| < ¢, w —ﬂ]'-:

Loz

(19} wit) — 0 forf — oo,

Further we are going Lo prove that Q(=(4), y(£)) = {(0,0}].
Let (a,0) € §¥xit), w(t)). Then hy Definition 2 there exists a sequence
{{a]3%, such that &, — o, n — o and

(207 2y — e, gily) =0 forn— oo

Now, it snfices to show that @ = 0. Let a £ 0. Integrating the second
equation of {1) from #, to 1, + L, we get

ta+t1

Wt + 1) — pta) = — [ Sils e(s) yls)h)fzl={a)inis)da—
fe
bnt1
_.‘Tl{tm m[ﬁn_]}.‘i‘.&{'!"“ﬁ ]_.' - j [.‘.:I'l['q--""-":-q:'] — M [-!:;.,. 1 J.'-'I:.L._':I }jﬂ'ﬂ [y';ﬁ.:']dﬁ_
19
Tl el
[ toatute)) - aalulta onten,sloaiida == [ bia,2(s), (1)
49 n
tnt+l
= f el &, x(a), yia))ds,
fm

FCEN
i fI,_., 't[.I"L']:'gl{F[’Iu']':I = fi{T, ) Il'l:_tn | 1:' =
Lip—1

- f T 1 e B

la
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tnfl
f (g5, zi#)) — gltn. 20200 gaipl ) hds-
L0

tnt1 tntl

= f (galgia)} — guly(ta ) }ign t, 2(1,) s f Ris,z(a), yia)lds—
n Ery
Latl
- [ etnzlan vtands

Tarther we hawve

(21) 91ty 20t g3t )) < [u(ta)] + lyltn + 13[4
b=l
§ f |l 2020, w8 9 8)] fal 2l £))ds 4
Im
L1
-| jm{s,zuaj}—glun..zunn|mw{s:|}¢e+
Ia
=1
+ f |g2(¥(5)) — gal it Dl galtu. 2{t )] ds+

[

tn1 a1
+ [ |l 2, (2}, yis))|ds + [ |'E:|:4'-':-"5'::5:|:- y[.s:];lll'f&.
|:r|, IE||.

By ihe well known Lagrange’s theorem there exdsis £ ¢ (1, 5) and hy {12)
& positive constant @; such that

lgaiwls)) — galplte))] = lwis) — wita Mob (w3 = (|wia)] + |w(ta)]da.

Integrating the firsl equation of (1} from i, to § we get

L
(1) — &(tn) = | wls)ds
/
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and for { € [{n.0; + 1] we have

|e{i) — zita)| = sup (gt} = M.

ES[tn]

Let R, he the maximam of all constants in this prool. By (143, {17), (21}
and the above mentioned estimates, we oblain

|t tns it )| g2(w{te)) < 2M (K2 4 Kolguite, 20600 + 1) 4

Ll H t=-+1
+ [ Ihtnatapianids + 5 f (s)ds.
:.I'I. Liv

By {2, (6] and (10 the last inequality gives

| {e(ta Dgely(ta)) € 2M (K2 + K or(te, o{t))] + 1)+

tmnt1 w tnd1
+ f hig, x{a), wis))|ds + T f r{s)ds,
*n im

In view of (107, (147, {18} and {19}, by the last inequality we have
izt ) — 0 for m — oo,

Since gy & TRy ), by (22} mie) = 0 for o # 0. Thiz contradicts (10] hence

w{t) — 0 for { — oo, The theorem is proved.

CororLany 3. Lot the conditions of Theorem 3 be fulfilled. Then
the frivial solution of (1) & globally asyraplotically slable.

Proor. By Corallary 2 the trivial anlution of (1] is nniformly asym ptotical-
lv atable and by Theorem 3 {zit), #{t)] — (0.0] for § — oo, whare [2(£], y{t)]
ia an arbitrary solution of (1}, Therefore by Delinition 5 the trivial solution
of (1) is globally asymptotically stable. The proof Is finished,

TREOREM 4. Suppose thal the assumption (2], (1}-(10} and (13} are
sotisgfied. Then the aolutions of (1) are uniformly bounded fort 2 0.

Proor. For any solution (@1}, x(1}) of {1) and a positive constant & we
define
Vit,r,y) = Ghlt.a)+ Gely) + & in L.
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By (2], {6) and { 10) we get
0 < Wilz,y) = Piiz)+ Galy) + K < V(L,z.p) <

< Bz} + Guly) + K = Walz,y)

in Dy and by {4) and {10} Wi (%, ) — oo for |z] — 2, 9] — oo, Differentiate
Vi) = Vit, o{¢), y{£)) with respect to 1, using (5)-(9) and (13) we obtain

v . )
——=——fe(z ylfo(z) = —Wy(z,y) In Dq.

i ¥
(2 (2 g2iy)

[

With respect to Proposition 1. the prool is complete.

CoroLLARY 4. Let the conditions of Theorem 4 be fulfilled. Then
the trivial solution of (1) i uniformiy esymptoticolly siable.

Proor, From (2), (5) and {8) it [ollows g{&,0) = 0, &{t,z,0) = 0 and
eit,e,0) = 0fort € I and £ & Ry. Thiz means that {1) has the trivial
solution, For an arbitrary solution («{t), g{t)) of {1} we define

Vit,z,5) = Gi{t ) + Faly) in Dy
By (2}, (6) and {10) we have
Vilz,y) = Pulz) + Galy) < V(L 2,y) < Palz) + Galy) = Valr,3)

in fy, where T5(0,0) = 0 and Yz, y) = 0 for (x4} # (0,0}, { = 1,2, Ths
means that the function V(4, 2, ) is positively definite and by Definition 4
it iz uniformly small. Similarly as in the proof of Theorem 4 we get {22).
Witk respect to Proposition 2 the proof s complete,
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