Buletinul Științific al Universității din Baia Mare Seria B, Matematică-Informatică, vol.X(1994), 93-98

ON SOME EXTENSIONS OF COLLINEATIONS OF A DESARGUESIAN PROJECTIVE PLANE

Angela VASIU, Nicolae OPREA

SUMMARY. In [7] and [8] was introduced the notion of anchor in a translation projective plane, by which can be realised the extension of collineations defined on a subset of a translation projective plane.

Let Π and Π' be two translation projective planes and P, P', their sets of points, d_* , d'_* their impropre lines and T, T' the translation groups of the given planes.

For a subset $C \subset P$ we denote $\Omega(C, P')$ the set of all injective collineations from C to P' and:

$$C_{\bullet} = C \setminus d_{m}$$
, $C_{\tau} = C_{\bullet} \cap \tau^{-1}(C_{\bullet})$, $\forall \tau \in T$

Definition 1.1. The set $C \subset P$ is called an anchor, if for any translation plane π' , for any $\varphi \in \omega(C, P')$ and for any $\tau \in T$, there exists $\tau' \in T'$ such that:

- 1. $\tau'(\phi(M)) = \phi(\tau(M))$, $\forall M \in C$
- 2. $(\tau_2 \circ \tau_1) = \tau_2' \circ \tau_1'$ and $cen \tau_1 = cen \tau_2$ $cen \tau_1' = cen \tau_2'$ $\forall \tau_1, \tau_2 \in T$.

Definition 1.2. The set $c \subset P$ for which is true only the first condition is called a semi-anchor.

For the anchors introduced by F.RADO in [5] he proved that any collineation of a plane defined on an anchor, can be extended to a collineation of the whole plane. In [4] are given exemples of semianchors.

In the case of desarguesian projective planes, the collineations are represented by semilinear transformations of the corresponding vector spaces, and as it results from [1], [2], these can be characterised by a dilatation group by an elation group of a plane. The role of the translation group is taken by the delatation and elation groups, in a desarguesian plane.

In [9] we generalised the notion of anchor for a desarguesian projective plane. In [10] are given for a pappusian projective plane some anchors which correspond to some special collineation groups.

2. Let II and II' be two desarguesian projective planes, θ and θ ' their point sets, (GL), (GL)' the groups of projective collineations of π and π' . We denote by (GL)_a, (GL)_a the group of the projectivities of a line $d \in \pi$, $d' \in \pi'$. Let $C \in \theta$ be a set of points and $\omega(C, \theta')$ the set of injective collineations $\phi: C \to \theta'$.

Definition 2.1. Let $g \in GL$ (or $g \in (GL)_c$) and $C_q = Cng^{-1}(C)$. We say that C is compatible with g if $C_q \neq \emptyset$, $C_q \notin \mathscr{F}$, where \mathscr{F} is the set of fixed points of g, if for any $\phi \in \Omega(C, \emptyset')$ there exists an unique colliniation $g' \in (GL)'$ (or $g' \in (GL)'_{d'}$) such that for any $M \in C_q$ to be satisfied the relation:

$$g'(\varphi(M)) = \varphi(g(M))$$
 (1)

Definition 2.2. Let G be a subgroup of the group GL (or of the group (GL)_a). The set $C \subset P$ is called a G-anchor, if it is compatible with any geG and if for any $\varphi \in \Omega(C, P')$ we have:

$$g_2 \circ g_1' = g_2' \circ g_1'$$
, $\forall g_1, g_2 \in G$ (2)

Definition 2.3. Let G_1 and G_2 be two subgroups of the group GL. A set of points $C \subset P$ is called a $G_1 - G_2$ -anchor if C is G_1 -anchor and G_2 -anchor, C is compatible with $g_2^{G_1} = g_1 \circ g_2 \circ g_1^{-1}$ for any $g_1 \in G_1$, $g_2 \in G_2$ and if:

$$(g_2^{g_1})' = (g_2')^{g_1'}$$
 (3)

Definition 2.4. In the desarguesian projective plane w let Q be a point and d a line, nonincident with Q. A projective

collineation δ which admits Q and all points of d as fixed points, is called a dilatation with d as axis and Q as centre. The set of these dilatations forms a group, noted by $D_{\alpha,0}$.

Definition 2.5. If H is a point incident with d, a projective collineation $\tau\colon \pi\to\pi'$ by which all the points of d and all the lines which are incident with H are fixed, is called an elation with the centre in H and of axis d.

The set of elations forms a group denoted by $T_{\rm d,z}$. The set of elations:

 $T_d = \{\tau \in T_{d,H} | H \in d\}$ is also a group, called the group of elations with axis d.

We use the next theorem from [9].

In a desarguesian projective plane let Q be a point and d a line, Q\$\operatorname{d}\$, and \$C \subseteq \rho\$, a set of points which contains Q and at least two points \$H_1\$ and \$H_2\$ of the line d. If C is a \$D_{d,0}\$-\$T_d\$ anchor, then any collineation \$\phi\$: \$C \to \rho'\$ can be extended on the whole plane \$\pi\$, that is, there is an unique projective collineation \$f\$: \$\rho \to \rho'\$ such that \$f\$|_c = \rho\$.

In [10] we found three types of anchors:

- 1). $C = \Gamma \cup d$, where Γ is a propre conic, d a line, $\Gamma \cap d = \{A,B\}$, C is a $G_{A,B}$ -anchor, when $G_{A,B}$ is the subgroup of projectivities of the group $(GL)_d$, having A,B as fixed points.
- 2). $C = \Gamma \cup d$, where Γ is propre conic, d a tangent to Γ in $A \in \Gamma$. C is a G_A -anchor where G_A is the subgroup of $(GL)_d$ having A the only fixed point.
- 3). $C = \Gamma \cup d \cup \{P\}$, Γ and d are the same as in case 1, and P belongs to tangent in A to Γ . C is a compatible with all involutions of d which have a fixed point in A.
- In this note we give C new anchor in a projective desarguesian plane.
- **Theorem 3.1.** In a projective desarguesian plane let $C=d_1\cup d_2\cup d_3$, d_1 lines and $\{0\}=d_1\cap d_2\cap d_3$, then C is a $T_{d_{1,0}}$ -anchor, for $i=\overline{1,3}$.

Proof. Let τ be an elation from $T_{d_{\tau,0}}$ and $M_1 \in d_1$, then $t\left(M_1'\right) \in d_1 \in C \text{ . If } \phi \colon C \to P' \text{ is a collineation , let } \tau' \text{ be the elation}$

from $T_{d_{3,o}}$, $d'_{3} = \varphi(d_{3})$ and $o' = \varphi(o)$ determined by:

$$\tau'(\varphi(M_1^O)) = \varphi(\tau(M_O')) \tag{4}$$

Let M_1 be an arbitrary point on the line d_2 . Then $\tau(M_2) \in d_3$ (by definition of elation τ) and we have:

$$(M_1^o + M_2) \cap [\tau (M_1^o) + \tau (M_2)] \in d_3$$
 (5)

$$[\phi(M_1^0) + \phi(M_2)] \cap [\phi(\tau(M_1^0) + \phi(\tau(M_2))] \in d_3'$$
(6)

From (4), (5) and (6) we obtain:

$$\tau'(\phi(M_2)) = \phi(\tau(M_2)), \forall M_2 \in d_2$$
 [7]

Similardly we can deduce:

$$\tau'(\varphi(M_1)) = \varphi(\tau(M_1)) , \forall M_1 d_1$$

If $M_3 \in d_3$, then $\tau(M_3) = M_3$, $\tau'(\phi(M_3)) = \phi(M_3) = \phi(\tau(M_3))$..

Also for any M∈C we have:

$$\tau'(\varphi(M)) = \varphi(\tau(M))$$
(8)

We deduce that C is compatible with any elation τ from $T_{d_{1,0}}$. For $\tau_{1},\tau_{2}\in T_{d_{1,0}}$ and M \in C the points $\tau_{1}(M)$ and $\tau_{2}\circ\tau_{1}(M)$ belong to C, and from (8) it results that:

$$(\tau_2 \circ \tau_1) \circ \varphi(M) = \varphi(\tau_2 \circ \tau_1(M))$$
 and:

$$\varphi (\tau_2 \circ \tau_1) (M) = \varphi [\tau_2 (\tau_1 (M))] = \tau_2' (\varphi (\tau_1 (M)) = \tau_2' (\tau_1' (M))$$

and thus we have:

$$(\tau_2 \circ \tau_1) = \tau_2' \circ \tau_1'$$

that is C is a T_{d_1} -anchor.

Analogously we can prove the C is also a $T_{d_{1,o}}$ and $T_{d_{2,o}}$ anchor, what proves the theorem.

REFERENCES

- 1.ARTIN,E. Geometric Algebra (Interscience Tracts in Pure and Appl.Math.3, New York, 1959
- 2.LÜNEBUNG,H. Über die Struktursaze der proiektiven Geometrie, Arch.Math.17, 206-209, 1966
- 3.ORBAN,B. Extension of collineations defined on certain sets of a Desarguesian projective plane, Aequationes Math., 6, 59-65, 1971
- 4.ORBAN,B. On semi-anchors of a translation plane, Journal of Geometry, vol.3/2, 191-196, 1973
- 5.RADO,F. Behandlung von Fragen über Kollineationen mit Funktionalgleichunsmethoden, Aeguationes Math., 2, 358, 1969
- 6.RADO,F. Darstellung nicht-injektiver Kollineationen eines proiektiven Raumes durch verallgemeinerte semi-lineare Abbildungen, Math.Z., 153-170, 1969
- 7.RADO,F. Congruence-preserving isomorphisms of the translation group associated with a translation plane, Canadian Journal of Math.23, 214-221, 1971
- 8.RADO,F. Extension of collineations defined on subsets of a translation plane, Journal of Geometry 1, 1-17, 1974
- 9.VASIU, A., ORBAN, B. On the generalisation of anchor introduced by F.Rado. Reserch Seminars Seminar on Geometry "Babeş-Bolyai" University, Preprint nr. 2, 79-88, 1991

10.VASIU,A. - Some anchors of a pappusian projective plane (to appear in Research Seminars, Seminar on Geometry "Babeş-Bolyai" University, 1993, SUT Journal of Mathematics of Univ. of Science from Tokyo, Japan, 1993.

Received: July 20, 1994

UNIVERSITY OF BAIA MARE
DEPARTMENT OF MATHEMATICS
4800 BAIA MARE
ROMANIA