Approximation of Functions by Typical Means

of Their Fourier Series

Yuri L. Nosenko

Summary. The representation of a deviation for integrable functions and typical means for Fourier series of these functions is obtained. An appropriate remainder is estimated from both above and below by modulus of smoothness of even orders for given functions.

Let a function $f \in L^p$, $1 \leq p < \infty$, 2π -periodic and

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx} = \sum_{k=-\infty}^{\infty} A_k(x)$$

(1)

Fourier expansion for $f(x)$. Let us consider typical means for (1) i.e.
\[\sigma_n(f; x) = \sum_{|k| \leq n} \left(1 - \frac{|k|}{n+1} \right) A_k(x). \]

Let \(\Delta \) and \(\omega \) are symmetric difference and modulus of smoothness (of appropriate orders and steps) respectively.

The deviation \(f(x) - \sigma_n(f; x) \) was investigated by some authors in different directions. Here is one of these results due to Lebed' H. K. and Avdienko A. A. [1]:

\[f(x) - \sigma_n(f; x) = \frac{1}{2\pi} \int_1^\infty \Delta^2_{\eta/(n+1)} f(x) t^{-2} dt + \tau_n(f; x), \]

\[||\tau_n(f; x)||_p \leq C \omega_\delta(f; 1/(n+1))_p, \quad C > 0. \]

In [2] we have represented \(f(x) - \sigma_n(f; x) \) as a sum of appropriate improper integrals of differences for \(f \) and conjugated function of second-fourth orders and with a remainder estimated from above and below by a fourth order modulus of smoothness for \(f \) \(\exists C > 0, \)

\[f(x) - \sigma_n(f; x) = C_1 \int_1^\infty \Delta^2_{\eta/(n+1)} f(x) t^{-2} dt + C_2 \int_1^\infty \Delta^4_{\eta/(n+1)} f(x) t^{-4} dt + \]

\[+ C_3 \int_1^\infty \Delta^4_{\eta/(n+1)} f(x) t^{-4} dt + \tau_n(f; x), \]

\[C_2 \omega_\delta(f; 1/(n+1))_p \leq ||\tau_n(f; x)||_p \leq C_3 \omega_\delta(f; 1/(n+1))_p \]

Now we give a new result in this direction.
\[\exists C_2 > 0, C_3 > 0 : \left(\sum_{k=1}^{n} e^{-2^{k+1}t} \right) \delta_k (f; x) = \]

\[- \sum_{j=2}^{n} C_2^j \int_1^{2^j} \Delta_{(n+1)} f(x) e^{-2^j t} dt + \sum_{j=1}^{n-1} C_2^j \int_1^{2^j} \Delta_{(n+1)} f(x) e^{-2^{j+1} t} dt + \tau_n (f; x) . \]

\[C_2 \omega_2m(f; 1/(n+1))_p \leq ||\tau_n (f; 1/(n+1))_p || \leq ||\tau_n (f; x) ||_p \leq C_3 \omega_{2m}(\ldots), m \in \mathbb{N} \]

The idea of the proof is the same as in [2]: the principle of comparison due to Trigub R.M. [3] and the theorems on multiplicators.
REFERENCES

Donetsk State Technical University
Donetsk, Ukraine