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A FINITE ELEMENT METHOD FOR FRICTIONAR CONTACT PROBLEMS

Micokae POP

ARSTRACT. ‘The present paper is concerned with the an alysis with fimie
ciement of a friction contagt phenomena for [wo clastic bodies thal come inko
conlaerwith, friction obeying the normal comphance faw, Variatonal principhes
b 5 clags of friction conack problems are also established and finite element
models and numerical algorithms for analyzing of this frroblem are presented.
A perturbed Lagrangian discrete formulation within the framework of F.E M,
izobtained,andin the 3D case is used a four-nodes contact Gnite clementwhich
consists in 3 masters and 1 slave, generalizing the bwo dimensional case con-
sidered by In and Tayior[3]and by Wriggers and Sima [8]

L INTRODUCTION.

The nature of dynamic friction forees developed berween hodies
comtact is excremely complex and is affected by long list of factors : the
comstitetion of ihe interface, (he fme seales and frequensy of confact, the
response ofthe interface pormal forces, inertia and thermal effects, rougfiness
contactingsurfaces, history of foadings, wear and peneral failure of the interface
malcrials, the presence or ahsence of luhricants, and 5o on. Thus, dynamic
riciion i not & single phenomenon buris a collection of many complex mech-

anical znd chemical phenomend.
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Interface wodel for dynamic friction is the caracterization of the re-
spomse of the mrerface (o normal farces, This mechanical response for most
metal-cn-metalinterfaces is highly nonlinear.

Stick-slip tolion may be & manifestation of dvnamic instabilities inher.
ent in the coupling of aormal and tansential relative motions of contacting
bod e,

Finite element methods, together with numerical schemes for sobving
wssuciated systems ofnonlinearc ordinarydifferential equations, are capablcof
madeling stick-slip motion, dynamicshiding, friction damping and related ple-
nomenain a significant range of practical probiems,

The new models of Frition and contact, fn the st decade, are often
hased an friction laws which recognize the compliant microstruceure of contact
interiaoeand that were not only more physically realistic than classical theogies,
batwhichwere also mathematically tractable.

The existence of a solution for quasistatic [rictional contact problems
with niormal compliance law was proved by Anderson [3] using incremental
lormulations and, in presence ofa time regnlarizztion, by Kla rhring et al[6] in
a dilferent manner. Rabicr etal. [7] proved the existence and local (for suffi.
ciently small friction coefficients) uniqueness of solutions for cases in which
shdingcontactoccursin a prescribed direcrion,

The present paper i 2 contineation of the analysis presented in (4],
which consists in 2 numerical analvsis ofa quasistaticcontact problem in finear
clasticity with dry friction. The problem i intended to model the physical
situation ofre clastically deforming hodi cs thateome it contastwiih fiction
obeying the normal compliance law.

First we give & classical and variaticnal formulation of the contiiuos
contact problem. After obtaining the continuos contact peoblem we dorive the
resultand obtainan incremental formulationobtained by time discrerization of
the problem.

Thenweeonsider adiscrere variational formulation of theincremental
probiem usinga peruthed Lagrangian [unctional,
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Also, in the present paper is described a contact finite element in the
three dimensional case, peneralizingthe two dimensional case considered byJu
and Taylorin{3]and by Wriggers and Simo in [§]

2, CLASSICAL AND VARIATIONAL FORMULATIONS OF
PROBLEMS iN ELASTOINYNAMICS,

We shall now formulate a ¢lass of ininal-value problems in elastody-
namics which include shiding iriction effects. Let £ C RY.a =12, N=23, the
domainz occupied by two elastic hadies that come into eontact with fnchion.

et us denote by T the boudary of @7 and let TS, T¥,T% be open and
disiointpares of | so that T = TRUTTUTY witha=1.2

Assume that the bodies @ are subjected to volome forees of density
fﬂ = U]"_.....f.l.-‘g v oo BF, to surface tractions of density
£ =ity "t ") on T0 and are hold fixed on I We shail usse the
foliowing notations for the normal and tangsntial components of the dispiace-

ments and of the stress vecror

1
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= e'l"’,ﬂ_l.'—-ﬂ"f.ﬂ-j}i
whereij=1,..N, #“ = (a{,..5 ¥} is the cutward normal unitvector
on ' and the summ ation convention is nsed for i and j
Find the ficld of displacements u® = u W), velodties
pi=(uf.. . 0%) sadaccelerations w ={ uf,.., uR ) fora time interval LT},
defineds on @ " wich satisfy the following equations and conditions ;
-the equilibriuvm vquation
o glu® =t QTR (OT ) (1)

- the constitutive equation

T EE) P . r]
-:'.I""=|:i :l;._;-_1$ Al :l i L2 {-E-']



sy = 1 {e'h-“' + -*-h—'*j f /= the componacnt: of bodyforee per unit

1 .:II* ﬂ,fi:.

woinme. aisimed to be sufficienily smooth furctione ofx = (ry. o0 )s
= mass densiry,

1;5 =10, pELTQ), pzpix

i = particle acceleration = du
- the bonndary conditions

wi=0on TSx{oT)
.,r:r";.- (1 i o= 15 an TTx (0T ) (3
- the initial condifons
ux,0)y=u’, iy =u® in Far=0 41
with ™, 7 given smoth functions ofx;
- the normal normal interface response
el = =c ul—ui- )07 0n PI(0,T) (%)

with ¢ , and m, material parameters (sex [2]4

, e (I6T64612 % 7 100ALe;

S {1.3630)"
where £ is the initial mean plan distance d=Eg, ¢ 1and ¢ 2are mechanical
constants cxpressingthe nonlinear distribution of the surface hardness,o and

m arestatisrical parsmeters of the surface profile, representing respectively
the RMS surface roughness and the mean asperity siope,

-the friction and contact conditions ;
ki-ulsg @ opu)=0

:a;-{u‘:’:|| =il L—uj -g'ﬂef
uh=uirg * wrn”)| oppt=ud=g) P eut-ui=lr  (B)
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Where ¢, iz, 0 5 morare matenial constants depending on interface
proprerties b, = max ({0, &}, i inthe tangential velacity of material particles
on [ 7[5 isthe prescribed tangendial velocity of the T 3 with which T : comes
i contaet and o is the imitial gap between Th and T5 measured aloag the
cutward normal direction te [

The friction law (6) is « generalization of ihe Counlomg's friction law,
whichisrecovered ifm , = m = Insuch acase, g = £n'c, 16 the vswal coclficient
of friction. The law (6} allows lor a dependence of the friction cocfficicar on
normal contact pressure,

Followingsteps similar to those of Duvaurand Lions[1], the nonlinear

variational problem:
ProblemPL, Fiad the function u=[u’ &’ [3,T] = V st

<u{tNr=u{f) > Fafut = @)+ <Pl ) —uity =+

Filt), ) —f () K E)2ET (), —uit) >, ¥ o EV )
with the initial condilions
i ty=u, , v ly=m (5

We have assurned here, for simplicity, that p = 1. The following nota-
tions and definitions were also used :

Ve e T e[ H P v =0aeam TS 9)
thespace of admissible displacements {velocities )
@:Vxi =R

.re[u‘-sj=EJ’Eu";r;g,-E"}[ujff*fv}#* {19)



the virtual work prodused by the action of the stress 741 ) on rhe
sirains {strain rales) s »

PV <Plu)vr=le fub—ul-g)Tv.ds (11}
I

- the virtual work produced by the normal contact pressare on the
displacement{velaciryiv:

FVRV SR jiuvh = Loe (s —ui—g) T7iv = 5= U 7|do(12)

- the virtual power produced by the frictional foree on the velocity v,

e v’
<fthr>=T faf Fride”+ ¥ ,Ir,,:'?:r{v*f il (13)
a=12 a=1211

Here < ., > denotes duality pairingon V TV where V' iethe lopo-
logical dual of ¥ 5 ¥ is the trace operator mapping ( H (2} T onto
(H 500 Y which may be decomposed into normal com ponenty (v ) and
rangential componenisy v ). Forsimplycity of sotation, the latherare denoted

as v oand v 1, respectively. We also observe that the boundary integrals on '3
are well defined for 1 sm, mrs3 IN=3andforl sm, meif N=2,
hecause, for v, E[H (231" 10 )E[L70 )\ with 1 sgs 4 for N=3,
andwith]l g forN=2 In the case N=2 m.E[2,3.33|(see 2]

The firststep is to appoximate Problem P1 by a family of regularized
problems which lead instead of 2 variational inequalite, We approgimate the
friction functional : VsV = Rwhichis nondifferentiable in the second argument
(welocity) by a family of lunetionals f; conver and differentiable on the second
argument:

THEIET:

jelevy=Jpaera—ui—g P v 5o v = U 5)ds (14
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where the functionye: (L9 3 W= L4T £ ), isan approximation of
the Ffumetion |, (LATE A= LATEY and is defined for
g0, (LT 21y Yand e x ET'5, according to

yif [Bx )| =s
{13)

e I|r'|-|

b1 -1

1!:"3\;“.}‘{ §-
el ?—,'L ifjEx 3| = ¢
-E -.:l-' =

We aow define the regularized form of Problem Fl
Problem Ple : Find the functionue =fulu A1 (0. T]+F st

o

< gty m4a (e (£ )+ <P {Ualt v >+ fe s 1) Wl v ==
(16}

=<flt)p>, ¥ g
with the intrial conditions
(A7,

g (e, 0V =u,, Welx,0) =1
Weohserve thatnow have a vaniational equation instead ofavariational
inequality. However, the friction condition on I are now of the form

Resularized friction conditions:
(18]

u'ﬂ!n}:-cg{uf,—ui-g]'fj?.;

* | 4
where L F= u — W



Weconsider now its particularization forthe case ofa two-dimensional
(N=2)domain £ with a boundary ' sufficie niby smoth that we can define a
nmt veclor |« tangenl to !; In this case each vecior £ tangent fo ['3 i3
determined by the real number & suek that £ =5 - The functions e and
Fu 51;1",; Are then, essentially, real-valued functions of 1 real variable, defined
by

efRlP=2 150 if ] =
Vefy=g o (19)
(-9 il
(2= i£, é-tji El=e ;
‘I’elrf:':{ L LIL‘:IE_ || (20)
g i g e

The choice of ¢ will be dictated only by the desired proximity of the
solutions of Problems: P1 and Pl and the corresponding computstional costs
amsociated,

A FINITE ELEMENT APPROXIMATIONS OF THE 0N
ACT FROBLEM.

Using standard finile element procedures, approsimate version of
Problem Ple can be constructed in finite-dimensional subspaces
Vi{ CVC¥ ). Fora certain {h) the approvimate displacements, velociter
and eccclerationsatesch time care elements of Iy

RORRINE 1Y

Within each element (e = 1,..E, ) the components of the displace-
mentswelocitics and aceelerations are expressed in the form

N,
AR ) =3 v W), vie )=
=1

N N,
=X v Wk, v i) =Y O HON AR
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where j=1,2,...N; N..= number of nodes of the ¢lement,
v e 3, e, v i b are the nodal values of the displacements, erc., ot time ¢
and N is the element shape fonction associated wich the podal L

The finite element version of Problem P1z s then:
Problem P 1¢: Find the functionn h [0, T]=V 4 st

(udie),r H+aie), vy s <Plusg))r?>+
N I H IR R R vigy !

i

(21)

with the initial condifions

II ¥4 isthe oumber of nodez of finite clement mesh | then this
problem is cquivalent 1o the following :

Find the function r: [T ]=R i L

M7t + Koth- Peeh + jire, 7 (03 = Fo), (28
with the initizl conditions
00 =pasr0)=pi (24}

Here we have introduced the following matrix notations |

Pe),7 it ), F{2): the column vectors of andal displacements, veloc-
ities and sccclerations, respectively,

M standard mass marrix;

K :standard stiffness matrix ;

Fit): consistent nodal [oree vector;

P{r(t)): vector of consistent nodal normal forees on [ 5

J(F(E)7 (1)) 1 vector of consiscent nodal friction forces on | 3

p 1) initial nodal displacement (velocily};

The components of the element vector I are of the form

:=:'P:-:—_;- ._r_.lﬂ_lﬁjdi T..T]
I.*i-i

and the components of the elementvector | are of the form
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.:'e_lj- s —"_|.ﬂ‘r; N |l:| ” HZE}
Er;

tn order to obtain the components of the elements vectars
Foand | it used a contact finile clement with 3 nodes which consists in 2
masters and 1 slave, in 2D case (see [3]), and a contact finite element with 4
nodes which consists in 3 masters and 1 slave in 3D case (see [4]),

In all numerical applications we derived a perturbed Lagrangian for-
mlation for the case of frictional stick and for the case of frctional slide. For
the cae of irictional stick the perturbed Lagrangian functional for bodies in
eontact has the following form, in static case:

A, Zp Tt X)) = 1 a{u,uj ~f{u} +35 Ga +3F Gi+Er Gy —
1 1 {27)

, Yifie
e T 1.1.11:! P ke L q
- .:;'_- EE ﬂ s 2 EEI

where 1 is the vec torof nodal displacement, B, & Ty are the vectors
ofnormal and tangentiai nodal conract forces, respectively, Gr, Gr, Gr are the
veetors ofnormal and tangential nodal paps and wn , e, 0 are the normal and
tangential penalty parameten: respectively.
The Nevwton-Raphson method was applied to the diserete variational
formulations thatcan be derived from these pertuched Lagrangisn functionals
The normal vector on defined plane by the nodes 1, 2 and 3 and
reapectively vectors, defined by directions of the node 1.2 and 1-3 will be:
_ fxz—xa)(x3=x1) X3=X1 _¥g=1y
|LI?—I1]{1'1—*1}| L_E:;E & |T3“‘E | i
wherex ) =X +0, ,x7=Xy+0s, xy=Xz+iz signify the current
positions of master nodes; Xy, Xa, X5 are refercnce coondimates and
1,03, 05 are coment nodal displacements of poinis 1, Jand 3,
Inaddition, we define the current ‘surfaces coordinates’ as followin E

_ K, Xy I, %y

= !
|Hj"!j|t' e |Ig-I | (=5

mwhichx, =X, +u,denotes the currenl position of the slave node 5
The normal and cangential gaps g n . g 1. g r are delined as:
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where j=1,4...N: V.= number of nodes of the clement,

v ()5 e), v s ) ace the nodal values of the displacements, efc. af fime 1

;i

and N ; is the element shape fanction associated wich the nodal 1

The fnite element version of Problem P1z s then:
Problem P 1#: Find the function S0, T]=+V s st

THAR R L HOR R4 T S N,

with the ind@l condifians

21}

I N, icthe numher of nodes of finite clement mesh , then this

problem is equivalent to the following:
Find the function £:[0T]=R ¥ , ¢

M0+ Koth- Pire) + jirth ety = Fi1),
with the initial conditinns
f=p.,r{0i=p:

Here we haveintroduced the following matrix notations :

(231

)

#{21.F (£ )7 (1] the eoluma vectors of nodal displacements, veloc-

iries and accelerations, respectively;
M ; standard mass malrx;
¥ - standard seiffness makrix;
F(t): consistent nodal foree vector;
B{r{t}): vector of consistent noda! normal forces o [ i
Rl (£ vector of consistent aodal friction forees on T'3;
# o(p 1 )+ initial nodal displacement [velocity):
The components of the clement vector P are of the fom

P = —‘|— f.:l'l_ﬂj'."{:d::"
.fe'i-. Z

and the components of the elementvector j are of the form

1)
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In order 1o obtain the components of the slements vectars
P and | is wsed a contacl fnite clement with 3 nodes which consists in 2
masters and | slave, in 200 case (see [3]), and a contacr finite element with 4
nodes which conststs in 3 mascers and 1 shave in 3D case (see [4]).

lo all numerical applications we derived a perturbed Lagrangian for-
mulation for the case of rictional stick and for the case of frictional <lide. For
the case of mctional stick the perturbed Lagrangian functional for bodics in
coftact has the fullﬂﬂ-iﬂgfﬂl'm in static case:

A, Ep I =< a[ 1) =8} +33 Ga 45 G 45 G; —
27
Ejhfzc %:-.:"E. ;3&;3;3, i
where uis the vector of nodal displacement, ¥, T, Er are the vectors
ofnormaland tangential nodal contact forces, respectively, G, G: , G- are the
vectort ofnormal and tangential nodal gaps and e, ey, &y are the normal and
tangential penalty parameters respectively.
The Newton-Raphson method was applied to the discrete variationa
formulations thatean be derived [rom these perturhed Lagrangian functionals
The normal vector on delined plane by the nodes 1, 2 and 3 and
respectivelyvectors, defined by directions of the node 1-2and 1-3 will be;
_ (xz-xi){x3-x1) __Xi~x .I='I'j_'h (28
B T VT T [ TR 11, |xs =x.]
wherex | =X +0y, xa=X1+u2, x: =X 5 +u 5 signify the curnent
positions of master nodes; X1, X4, X3 are reference coordinutes and
Uy.W7, Uyp are current nodal displacements of poines 1, 2 and 3,

|n addition, we define the current surfaces coordinates’ as following:

P X=Xy

Ayt =l {29)

b= It'
|I_'.'—}:'|. =X

in which x , =X, +u .denotes the current position of the slave node 5.
The normal and cangential gaps ¢ o, g, g are defined as
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wherea and a5 are the old surface coordinates af the last time =fep known.
Notethat the gap gdepend: cn theslave node saswellas oo the master
nodes . 2and 3, Thus, the variation of the gap is obtained according o

., _,r'(

S P

———— “n &
h—-—u_,;;.i.rf B
.—'_'—- 3
|

e
! 1 | 2
' Fig 1, Geometryofa three-dimensiona] contact element

g
b
|
|

I ™~

Ezfagfh*ﬂﬂe.‘f-—-Eﬂ_J'lsi'li:""':”ii"f'!h'l'u’”} (31}
whers

A1 2. e = Ouldu g, dug, fu g, dug) (32)

With respect to finite element implementations, explicit mafrix ex-
pressionsforthe Lagrangian multiplier formulation and the penalty formulation

are derived as follows,
The discrete 'Ir'ar]ati-:rlra] cquatl::m s associated with (27) rake the form:

A nl-:l.l'ﬁ 'I'ETI.Ji Fr JG ‘FL "j'-..lt--"! - I:' [.33'::'

E *{':l} —'} [t“-:]
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85 (- = Er 4Gr) =0 (35)
g
0% (= —Ze +Gr ) =0 (38)
where [Hu) = l:' afi, ) ~f{w) is the cotal potential energy of the bodie: in

CORLACL, &“Unz"rﬁugé"'algg-"-“ @u&ﬁl:ﬁ dhy G ='I:-§'|; EE:. dy g?_-...:riu 31‘i| }T-.

duGe =idypr dy gl Ay 2740, S=total number of slave nodes in contact
s=12,..8, analogous for 4%, 42 42

The variational of a typical nodal normal gap g & G4 eake the form:
1 B B
S =3 M0 g 2% T I pi
1=1dub i=1j=1 i,
with the nmotation (32) and o ={_55|_:-_,§£g’ﬂﬂ_:> ‘?EE,,EEJ"] :
T TR T
= I"I;l'é1 e ,_?‘il_q; N . ,?jli ), weobtain:
d2n =0 op
Similarly, the variacion of a typical nodal tangeatial gap
8t E Gy, g £ Gy can be obtained according to
dgr=9Tcr, dgr=Te;
Moreover, the residual vector R and the tangent seiffness Kp assoi-
ared wath the tofal potential energy cfthe oon I;_ics:jng hisdies simply read, resiit
AT ) :qTR;; and dRp = ’TTKE
With, the convention: {u',..,u"” ) =(u} .03, ui 0}, ., ni) Fg. (33)
hecome:

A ks

mIRB +E{rkch +of § «of cf )] =0 (37)
=1
and analogous for Bq.(34)-35) where
T EE,mEL,mEL.
Trr apply the Newton's ireration scheme, eonsistent inearization of
Eq.{37yand those corresponding Bq.(35)-(36}, at{u, Zy, 3t , Xz is performed

and [eads to
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A Az AsAd, [Au Ry
|_T;I' -.Iﬁ._.n.ah .,l!a--'.] ,"sa'::l'f" I:|| m = .Rﬂl

||A00 Dy lﬂi‘f Rl |

= g
whers & = KH+Eyku+hF+k§},&‘ lllﬂ A= ELE =%l
=1 - g=1 s=]
1 1 1
E;=-w—l__] , ':3=‘-Elf ; Duz—m;I

Ry =Rp +Z [ohek +elef +d )

=1

] . 1 h
R'_:':—;];:'lzn"{rn . H‘!:_L:-'*.E" +5 , Ra=-

Ui oy dup  Awaw T AW u A
I"m.'vrli':' after the discrete formulation within the framework FEM. a
standard assembly procedure can he used to add the contact contributions of
cuchcontace element to the global tangent stiffness and residual matrixand thus

] aie k] 7 ¥ 4o
[g-_nﬁq '}"’3 _E [E}T 1‘7:_';&_ &B._i_

we obtain:
KU=R ( 38)
5 5
where K =Kz + IKE R = —{Ra+ZR%} K, Ry are mechanical global

s=1 g-1
tangenl stiffncss matrix and residual veelor, K, RE are m::.dmnlcal conbact
contributions of contack nod & U ={Au, AL, AZ, AL T 5 is the total
numherof the slave nodes. And for wa = = or = and 07 =g, 0 = afh
% = wig result
5

E(‘-'-—EW{E..?JET‘.+g$k?+E.Ehi§+t'r.:¢n=+¢-frc|i+crc.#:| (39)
i=1
: 7 5, iT,5

Re=Emigleh+gl et +gf el) (40
=

For the ease of frictional slide the relation | Fraa| = (el where i
the cocificient of frietion and Zpaqis the resultforcs of the X and . farces in

the tangentplane of the contact surfave.
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Notewith # the angle between the sides X3 =x, and ¥ —x.: we obtsin

cogf =tz and ol =p VT rgi 17 [y [geleosff  where

£ =g ge) As a divect consequence of Conlomb’s friction law, it resalis
Et@r q

polan! =wr, where I'='r'“g{l+-g::':+2£ lg1] 'igrimgl.fi therefore
Adi=d e Eff_-;gn= = —-p SEDI:E.:]E-:-W§5=-F LBLS w2,
r r r

.ﬂ.f=—|u..lﬂ‘-:.:- wgp . I we note & = |2t ol |2x | . ht=:’_dl1

r r r U
hy= 3y . from finearized kinematics {ie., bv neglecting nonlinear terms
ol
S -
boand ki), we  obtaimKc=Y (SE+S5E) . with
gl r

S3=w(-pdiclel —pgabiTel-pgabiTcly, and

a
Re=ZXwiu g-.d{Tn;? +,ug:uc|$T er = g;TcE.]I

5=
4 ALGORITMS FOR NONLINEAR DYNAMICAL SYSERMS,

Thealgoritms that we shall use for solving the discrete dynamical system
involve variants of standard schems in use in nonlinear stroctural dynamics
calculations: the Newmark-type algoritm or the centreal-difference scheme.

Using the Newton-Raphson method to solve the varialional equation
obtained at time {; introducing, int the vaational equation (P17), the
refations which defines the Newmark-type algoritm or the central-difference
schemeobizined the following spstem of algebric linear equations to be salved
ateachiteration.

Remark. The discontinuityofthe Coulomb's friction law at zero sliding

velocity is a major cource of compitutional dificulties in friction

problems. Even though, in the algoritms described in this and the
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previous sections, a regularized form of that law is used, those dilfienltes cannot
he completely avoided. The situation which may arise when wsing the methods
describedberewith a constant time step is the following: in unloading situations
(passage from sliding to adhesion) the Newton-Raphson iterative rechniques
may fail to comverge it £ is very emall and the step (oo large. Forsm alivalues of
¢ the radius of converge of the iterative scheme used i very small due to the
steepehangesin @: on the interval [-e, ¢ |.

The critical situations arise in transitions from shiding to adhesion
hecause it is then that fhe most important changes in the solution cccur. One
simple remedy for these difficulties is to decrease the time slep until twe
saceesive solitions arc not Eoo farapart.

We give mumenical exemples in [4] and [11] the numerical solution 15
in good agreement with the Ruous [10], The computations have been carried
outwithinthe envirenment of the Finte Element Analysis Program (FEAP), sce
Zicokiewicz[12], usingthecontast finite elementin 30, presented inthis paper,

The critical situations arise in transitioas from sliding to adhesion
hecuuse it is then thaf the most important changes in the solution occur. Ons
simple remedy for these difficulties is to deercase the time step uptil two
succesive solutions are mot too far apart.
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