Buletinul Ştiinţific al Universităţii din Baia Mare Seria B, Matematică-Informatică, vol. XII (1996), 1-6

Dedicated to the 35th anniversary of the University of Baia Mare

ABOUT THE STRUCTURE OF THE 2 - RATIONAL GROUPS

ION ARMEANU

The structure of the groups all whose characters are rational valued(
the so called rational or Q groups) is relatively well known (see for
example [4]). In this note we shall study the structure of the finite groups
all of whose irreducible characters are rational valued on the 2 - elements.

The standard notations and terminology are those of [2] for the character theory of groups and [5] for the general theory of groups. All groups will be finite.

Definition . A 2-rational group is a group all of whose irreducible characters are rational valued on the 2-elements.

A rational group is a group all of whose irreducible characters are rational valued.

Proposition 1. A direct product of 2-rational groups is a 2-rational group and a factor group of a 2-rational group is a 2 - rational group.

Proof. Let G and H be 2-rational groups . Since the irreducible characters of G x H have the form $\alpha \times \beta$ where $\alpha \in Irr(G)$ and $\beta \in Irr(H)$ the first part of the statement follows.

The second part follows easily since the irreducible characters of a factor group pulls back to the original group.

The proof of the next proposition is analogous to the proof of the similar proposition for rational groups (see [2]).

Proposition 2. G is a 2-rational group iff x y in G whenever $\langle x \rangle = \langle y \rangle$ and x is a 2-element of G.

By prop. 2. it follows immediately:

Proposition 3. A group G is a 2-rational group f

$$N_c(< x >) / C_c(x) \equiv Aut(< x >).$$

Definition . Let G be a group. An element x of G is 2-central if there exist a Sylow 2-subgroup of G such that $S \subseteq C_c(x)$.

It is easy to prove:

Proposition 4. Let G be a 2-rational group. Then:

i) Every 2 - central 2 - element is an involution .

ii) For every $S \in Syl_s(G)$ the centre of S, Z(S) is an elementary abelian

2 - group.

iii) The Sylow 2-subgroup of Z(G) is an elementary abelian 2-group.

Corollary 5. Let G be a 2-rational group with S an abelian Sylow 2-subgroup. The S is an elementary abelian 2-group.

Proposition 6. Let G be a 2-rational group and S a Sylow 2-subgroup of G such that $N(<\infty)$ is subnormal in G for every x in S. Then S is a rational group.

Proof. Let s in S and the group isomorphism

$$f: N(\langle s \rangle) \rightarrow Aut(\langle s \rangle)$$

Let z,w a set of generators for Aut(<s>) and $x,y\in N(<s>)$ such that f(x)=z and f(y)=w. Since Aut(<s>) is a 2-group, we can assume that o(x)=2' and o(Y)=2'. By the subnormality of N(<s>), $S\cap N(<s>)$ is a Sylow 2-subgroup of N(<s>). By Sylow 's theorem there exist u,v in N(<s>) such that a=x' and b=y' are in S. Then f(a)=f(x)=z and f(b)=f(y)=w and the statement follows.

Proposition 7. Let G be a 2-rational group and $S \in Syl_{s}(G)$ such that for every $P \in Syl_{s}(G)$ and every noninvolutory $h \in S \cap P$ with $P \cap N(\langle h \rangle) \in Syl_{s}(N(\langle h \rangle))$ and $N(\langle h \rangle) \cap S \subset P$ there exist $g \in C(h)$ such that P' = S. Then S is a rational group.

Proof. Analogous to the proof of prop. 6 we obtain $a,b\in P\cap N(< h>)$ such that f(a)=z and f(b)=w.

Definition. Let H be a permutation group on the set W and let x in H. The cyclic group <x> acts on W. Denote by O(x,w) the orbit of w. We shall say that H is 2r-transversal if for every 2-element x in H, and m an integer relatively prime to o(x), there exist an element h in H such that $x' = x^n$ and hO(x,w) = O(x,w) for every w in W.

Using techniques of [3] we shall prove the next two theorems.

Theorem 8. Suppose GwrH is a 2-rational group. Then both G and H are 2 - rational groups.

Proof. By the de definition of the wreath product (see[3])H is a factor group of GwrH, hence by prop.1 H is a 2 - rational group.

Let g be in G a 2-element . Define $\pi:W\to G$ by setting $\pi(w)=g$ for every w in W. Then $1^*(\pi)(w)=\pi(w)=g$, therefore $1^*(\pi)=\pi$. Hence $o((\pi;1))=o(g)$ and $(\pi;1)$ is an 2-element in GwrH . Then for every positive integer m relatively prime to o(g) there exist (u;h) in GwrH

such that $(u;h)(\pi;1)(u;h)^{-1}=(\pi;1)^n$. Hence $u\pi_{\lambda}u^{-1}=\pi^n$. Since $\pi_{\lambda}=\pi$ it follows that $u(w)gu(w)^{-1}=\pi(w)^n=g^n$ for every w in w. Hence g is conjugate to g^n .

Theorem 9. Let G be a 2-rational group and (H,W) a 2-r transversal group. Then Gwr(H,W) is a 2-rational group.

Proof. Let (f;x) in GwrH a 2-element and let m be a positive integer relatively prime to o((f;x)). We have to show that $(f;x)^*$ is conjugate to (f;x). Clearly $(f;x)^* = (ff,...f_{x^{n_1}};x^n)$. Denote $g = ff,...f_{x^{n_1}}$. Since H is 2r- transversal, there is an element h in H such that $x^* = x^*$ and hO(x,w) = O(x,w) for every w in W.

Then $(1;h)(f;x)^{e}(1;h)^{-1} = (g_{s};x)$.

We shall prove now that (g_*) is conjugate to (f;x). It is straightforward to prove that $x^*(g_*)(w) = (x^*(f))(h^{-1}(w))^*$ for every w in w. Then $h^*(w) \in O(x,w)$ and therefore $(x^*(f)(h^{-1}(w)))^*$ is conjugate to $x^*(f)(w)$. Hence $x^*(g_*)(w)$ is conjugate to $(x^*(f)w))^*$ and since G is a 2-r group and $x^*(f)(w) \in G$ it follows that $x^*(g_*(w))$ is conjugate to $x^*(f)(w)$.

We shall construct now a map $\mu:W\to G$ such that $(\mu,1)(g_i,x)(\mu,1)^i=(f,x).$ Let $W=O(x,w_i)\cup...\cup O(x,w_i)$ be the pairwise disjoint factors decomposition. Let $|O(x,w_i)|=s_i$. By the previous , there exist $\mu(w_i)\in G$ such that $\mu(w_i)x^*(g_i)(w_i)\mu(w_i)^{-i}=x^*(f)(w_i)$ for i=1,...,q.

We define μ on all W by setting

$$\mu(x^{-\epsilon}(w_i)) = \{f(w_i)...f_{i-\epsilon}(w_i)\}^{-\epsilon}\mu(w_i)\{g_s(w_i)...g_s(x^{-\epsilon-\epsilon}(w_i))\}$$

for every $1 < k < s_i - 1$.

It remains to verify that $(\mu,1)(g_{s},x)(\mu,1)^{-1}=(f,x)$. This follows if we prove that $\mu(w)g_{s}(w)\mu(x^{-1}(w))^{-1}=f(w)$ for every w in W . For w=w, this is obvious . In general , write $w=x^{-1}(w)$ and straightforward follows the statement.

Theorem 10. [1] Every group G can be embedded in a symmetric group S such that if $x,y \in G$ are conjugate in S then < x > and < y > are conjugate in G.

Theorem 11. A group G can be embedded in a symmetric group S such that the 2-elements of G do not fusion in S iff G is a 2 - rational group.

Proof. Let G be a 2-rational group embedded in a symmetric group S as in theorem 10. Then x^*-y in G for some positive integer q. Since x^*-x^* in G, the 2-elements of G do not fusion in S.

Reciprocally, let G be embedded in S such that the 2-elements of G do not fusion in S. Let $\chi \in Irr(G)$. For every 2-element x of G we have $\chi^s(x) = e\chi(x)$ with e a positive integer. Then $\chi(x)$ is rational and the statement follows.

REFERENCES

- V. Alexandru et I. Armeanu, Sur les caracteres d'un group fini.
 C.R.Acad. Sc. Paris t. 298, Serie I, 6, (1984), 99-102.
- I.M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.
- A. Kerber , Representations of Permutation Groups I, Lecture Notes in Mathematics 240 , Springer Verlag , 1971.
- D. Kletzing, Structure and Representations of Q- Groups, Lecture Notes in Mathematics 1084, Springer Verlag, 1984.
- 5. J.S. Rose, A Course on Group Theory, Cambridge, 1978.

Received 1.09.1996

University of Bucharest, Physics Faculty

Mathematics Dept., Bucharest - Magurele

P.O. Box MG-11, Romania.