Dedicated to the 35th anniversary of the University of Baia Mare

THE COMPLETION OF A GAUSS TYPE VALUATION FIELD

ANGEL POPESCU

1.Let (K,v) be a local field, K being a commutative field and v a discrete and rank one valuation on K, such that K is complete with respect to v. For a $\delta \in \mathbf{Q}$, one denotes by $P_{\delta}(K,v)$ the set of all Laurent series $\alpha = \sum_{n \in \mathbf{Z}} a_n X^n$, $a_n \in \mathbf{K}$, for every $n \in \mathbf{Z}$, and

- a) there exist $M \in \mathbf{R}$ with $v(a_n) + n\delta \geq M$, for every $n \in \mathbf{Z}$,
- b) $\lim_{n\to-\infty} (v(a_n) + n\delta) = \infty$.

If we define $u_{\delta}(\alpha) = \inf_{n \in \mathbb{Z}}(v(a_n) + n\delta)$, u_{δ} is a rank one and discrete valuation on $P_{\delta}(K, v)$ and this one is a local field with respect to u_{δ} . We call $P_{\delta}(K, v)$ a Parshin field ([4]).

In [1] we find a description of the completion of the rational function field K(X) with respect to the so called Gauss valuation u_0 , where $u_0(a_0 + a_1X + ... + a_nX^n) = \inf_n(v(a_n))$, as a subfield in the Parshin field $P_0(K, v)$. Now, if we introduce on K(X) a Gauss valuation u_δ , where $u_\delta(a_0 + a_1X + ... + a_nX^n) = \inf_n(v(a_n) + n\delta)$, it is not difficult to do the same type of reasoning as in [1] in order to describe the completion of K(X) with respect to u_δ in the Parshin field $P_\delta(K, v)$.

2.Let a be an algebraic element over K and K' = K(a) the corresponding algebraic extension of the field K. For a $\delta \in \mathbf{Q}$, we denote by $P_{\delta}(K, v, a)$ the set of all Laurent series $\alpha = \sum_{n \in \mathbf{Z}} a_n(X - a)^n$, $a_n \in K'$ with the following properties:

- c) there exist $M \in \mathbb{R}$ with $v'(a_n) + n\delta \geq M$, for every $n \in \mathbb{Z}$
- d) $\lim_{n\to-\infty}(v'(a_n)+n\delta)=\infty$, where v' is the unique extension of the valuation v to K'.

If we define $u_{\delta} = \inf_{n \in \mathbb{Z}} (v'(a_n) + n\delta)$, $P_{\delta}(K, v, a)$ becomes a local field with respect to u_{δ} .

3.If $P(X) = a_0 + a_1X + ... + a_nX^n$ is a polynomial in K[X],we consider $P(X) = a'_0 + a'_1(X - a) + ... + a'_n(X - a)^n$, the Taylor's expansion of P(X) in the element $a \in K'$.

Let us define $v_{\delta}(P(X)) = \inf_{n}(v'(a'_{n}) + n\delta)$. It is not difficult to prove that v_{δ} is a valuation on K(X). The problem is how to describe the completion of K(X) with respect to v_{δ} . It is clear enough that v_{δ} is a Gauss type valuation on K'(X), and the completion of K'(X) with respect to this last valuation is possible to describe as a subfield in $P_{\delta}(K, v, a)([1])$. Using Taylor's expansions in a, it is possible to construct an embedding of K(X) in K'(X) and then in $P_{\delta}(K, v, a)$. So the completion of K(X) with respect to v_{δ} is exactly the topological closure of K(X) in $P_{\delta}(K, v, a)$. It remains only to say when a polynomial from K'(X) is a Taylor's expansion of a polynomial from K(X).

Theorem 1

A polynomial $P^*(X) = a'_0 + a'_1(X-a) + \ldots + a'_n(X-a)^n$ is the Taylor extension of $P(X) = a_0 + a_1X + \ldots + a_nX^n$ if and only if we have the following matrix equality : $\mathbf{A}_n \times (a'_0, a'_1, \ldots, a'_n)^t = (a_0, a_1, \ldots, a_n)^t$, where $\mathbf{A}_n = (a_{ij}), \ i, j \in \{0, 1, \ldots, n\}$, with $a_{ij} = 0$ if $i > j, a_{ij} = 1$ if i = j and $a_{ij} = C^i_j$, a^{j-i} , if $i < j.(C^m_n = \frac{n!}{m!(n-m)!})$. The matrix \mathbf{A}_n is invertible in $\mathbf{Z}[a]$ and the image of K(X) in K'(X-a) is $\left\{\frac{a'_0 + a'_1(X-a) + \ldots + a'_n(X-a)^n}{b'_0 + b'_1(X-a) + \ldots + b'_m(X-a)^m}\right\}$, where $(a'_0, a'_1, \ldots, a'_n) = \mathbf{A}_n^{-1} \times (a_0, a_1, \ldots, a_n)$ and $(b'_0, b'_1, \ldots, b'_m) = \mathbf{A}_m^{-1} \times (b_0, b_1, \ldots, b_m)$, with $a_i, b_j \in K$, $i = \overline{0}, n$, $j = \overline{0}, m$.

Corollary 2 $P^*(X)$ is an element from K[X], if and only if $A_n(a'_0, a'_1, ..., a'_n)^t$ is a vector in K^n .

References

 Alexandru, V., Popescu, A., Popescu, N.:Completion of r.t. extensions of local fields(1),

Math. Zeit. 221(1996),675-682.

- [2] Bourbaki, N.: Algebre Commutative, Ch. 5,6, Hermann, Paris, 1964
- [3]. Hasse, H.: Number theory, Springer, Berlin Heidelberg New-York Tokyo, 1980
- [4] Parshin, A.N.: Abelian coverings of arithmetic schemes (Russian), Dokl. Acad. Nauk, SSSR, Tom 243, No. 4(1978), 855-858.

Received 01.06.1996

Technical University of Civil Engineering

Department of Mathematics

124, Bd. Lacul Tei

RO-72302, Bucharest

ROMANIA