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Abstract. This paper deals with the study of a gquasistatic problem modelling the
contaet botween an elastic body and a rigid foundation. The fretion law considered here
is the Trescn friction law. The paper presents two variational formuokations of the problem
followed by existence and unigueness resulta. The link between the solutions of the previous
variational problems is also stodied, logether with their mechamcal inlerpretation.

1. Iniroduction

This work concerns the study of the quasistatic evolution of & linearly clastic body in
bilateral contact with a rigid foundation. The friction law considered here is the Tresea
friction law. The classical formulation of the mechanical problem iz given by problem P.
For thiz problem we propose two variational formmlations siven by Py and Ps. P'roblen
P is obtained from P using a Green type formmula and the constitntive law. Sinee in this
way the stress ficld is eliminated, the unkuown of this preblem is the displacement fickd
denoted by w. Problem By is also obladned from P, using a similar method, Since i this
case the displacement ficld is eliminated, problemn /% involves as unknown only the stress
field denoted by @. For problem Py we prove an existence and uniguencss resull using
a time discretization method (theorem 4.1} Under the same assumptions we also prove
an existence and uniqueness result for the problem Py, applying classical arguments of
evolution equations { thearem 4.2, Finally, we study the link between the solution of the
variational problems [ and Py itheorem 5.1). lu particular, we obtain thal il w denores
the solubion of Fl and T Toproseils Lhe solurion of .”1 1‘-][(:"[1., li].l_‘l“:':}Ej.Jlﬁ ]:':mf &= El:'1.l.:l thu
small strain tensor, o and = must be related by che linear elastic constitulive law,
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2. Problem statement and preliminaries

Let us consider an clastic body whose material pasticles fulfil a bounded domain
(t — IRM (M = 2,3) and whose boundary I', assumned to be sufficiently smooth, is
partitioned into three disjoint mensurable parts [y, Iz and I'y. Let meas Iy = 0 and let
T = 0 be & time interval, We suppose that the displacement. field vanishes on T'y = (0, T},
that surface tractions F act on Ty = (0,T) and that body forces b act mn (2 % (0, T). The
solid is in contact with a rigid foundation on Ty x (0, T) and it is submitted to friction
forees. Assuming a linear elastic constitutive law and negleching the inertial terms, the
above mechanical problem may be formmiated as follows

Problem P : Find the displacement field w: @ = [0,7] — EM and the stress field
a2 x [0, T] = Sy such that :

ro = Ee{u) i $1 = (0,T) 2.1)
Dived+b=0 in Qx{0,T) {2.2)
u=0 on I' x(0,T) (2.3)
gp=F on Tx(0T) (2.4)

stp=0, |oe| =3

el cg=>u,. =0

|7e| = g = there erists A =10 suech that o. = —Au,
onn Ty = (0, T (2.3)
L ufll) =y e AL {2.8)

Here &y denotes the set of second order symmetric tensors on IE,'H_. £ represents the
fourth-order elastic tensor, &{u) denotes the smnall strain tensor and Dw o represcnts
the diversence of the tensor-valued function o. In the previous problem » denotes the
anit outward pormal to 2, or represents the Cauchy stress vector and ug is the initial
data.

Let us also notice that (2.5) defines the Tresca friction law in which «, represents
the normal displacement, @, denotes the tangential velocity, o 1s the tangential foree
on the contact boundary and g is the friction yield hmit. Moreover, in {2.5) as well as
everywhere iu this paper, the dot above represents the derivative with respect to the
timne varialble,

We denote in the sequel by .7 the inner product in the spaces Y and &5 and by
|- | the Fuclidean norm of theses spaces, We also use the following notations :

H={v=(y)|vucl¥Q),i=LLM},



M={v={mn)|wne HYyM,i=T.M} ,
H={r= ':""l'}} | 33 = T € L!':”] s g =LM ] :
Hi={reM|DivreH}.
The spaces H, Hy, M and H, are real Hilbert spaces endowed with the cannonical
inTueT pmducLE denoted by < ... =g, < 0 ZH,, < - PH arid < .. Ry

Let now = © H,. For simplicity we shall use sometimes the same notation v for the
trace of ¢ on I and we denote by v, aud v, respectively the noral and the tangential
trace of v (see for instance [4].[8]). We also denote by V' the closed subspace of Hy given
by

'L"={1-:EH1| =0 om [y , v,=0 on Ty }.

The deformation aperator & : ) — H delined by
; = g 1
) = (eglu)) o o) = gl + i)

is & linear aud continueus operator. Moreover, since meas 'y = 0, Korn's nequality
hslds -
leiulln = Cluly, YuselV (2.7

(see for instance [7] p. 79). Here and everywhere in this paper O will represent strictely
positive genere constants which may depend on 8, Ty, T, Ly, £, and T, and do
not depend on time or on the nput data.

On V we shall consider the inner product <2 -, - =y given by
< ww my=< s{u), =) =x . (2.8)
Using (2.7), we obtain that | - |g, and |- [ are equivalent norms ou V. Therefore, it
results that [V, ||y 12 a real Hilbert space.
Let us also recall that if # € M, we denote by 7, the normal trace of  on I {see for

instance [3] p.33) and that, if 7 is a regular function, the following Green type formula
helds :

f rr-v da =< T,65(v) =y 4 < Div rye =p Yo £ Hy. {2.9)
T

3. Variational formulations

In this section we obtain two variational formmlations for the mechameal problem
P, For this, let us suppouse that :
£:0x Sy — Sy 18 a symmetric and positively definite

tensor, 1.e. °

() Eu‘;#h £ L‘I[H:I Yok k=1M [3.1:."

(b Ea-T = o-Lr Wo,or e Sy, e in

(¢] there exists o = O sach thal o0 2 o P Yo e Sy



be WL(0,T,H) , FeW"={0,T, LA (T)") (3.2)
g €V (3.3)
el (3.4)

Using (3.1) it results that £ is an inversible tensor and we denote i the sequel by
£ the inverse of £. We also denote by f = [0,T] — V' the function gaven by

< flt), v =y= f bit).wdr 4 f Fitivda ¥Yeel, t£[0,7T] (3.5
0 T's
Using (3.2} and (3.5) il. follows
f e Wh={0, T, V). {3.6)
Let us denote
Tn = E-:'['I.!-n] I'::'I--T:I

and let § be the continous seminerm on V defined by
__fl:-;:l} = _qf _-i-!:,.lc.!'.u o' = L"r. [3.8]
'z

Finally, for all £ € [0, 7], let .40t} denote the sel given by
Palti={reH | <nelv) >n +ilv) = < flthe =y Ve V] {3.9]
and let us alzo supposc that
Tn £ Ea:[{ﬂl:" [3”]}

We have the following result

Theorem 3.1. If the couple of functions [, ) s a regnlar solution of the mech amiicil
problem P othen -

Wty eV, < o(thelv) - elb(t)) e Hile)—lall)) 2
{3.11)
> < fithe—dt) >y YrelV

alt) & Baalt) s €Sr- alt), alu(d)) =y =0 Wt e Eaall) (3.12]
for all £ € (0,77,

Proof. Let v € V. Using {2.9) and (2.2) we have
< aith e(v) — g(d(t)) >n = < bith, v — @t} »u —|-fmx-{u —ait)) da Wt e [0,T).
r
Using now (2.3),{2.4) and {3.3}, from Lhe previous equality we obtan
< alt)e(v) —e(d(th) =y = < fithov —d@lt) =y +

(3.13)
+ JI‘I gt [0 — wit)da ¥t e [0,T].
q oA Lo
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Moreover, from {2.3) and (3.8) it results

f g (v —uld)da = jlalt))— vy W€ [0, T i3.14)
s

The inequality {3.11) follows now from {3.13) and [3.14).
Taking now v = 2t and v = 00 in (3.11) we obtain

< aft), e(u{t)) =q +il@it)) = < f&), () =y ¥t e[0,T) {3.15)
Using again (3.11) and (3.13) it results
< o(t)elv) =y +jv) 2 < flt) o=y YeeV,te[)T]
Henece, by (3.9) it follows
o{t) € Baglt) ¥t £[0,T). (3.16)
Let now t € [0, T] and let 7 € X,40(t). We have
< 1 ()} = IR0 3 < F{E), ) =y (3.17)

The inequality (3.12) follows now from {3.15)-(3.17).

Having in mind the previous result as well as constitutive law (2.1) and the initial
condition (2.6}, we may cousider the following variational problems :

Problem P, : Find the displacement field w : [0, 7] — ¥ such that :
< Ee{ult)), slw) — slalt)) = +7(v) — jlalti) 2
> < flf)o—wt)>y YoelV ace te (0,T) {3.18}

w0} = ug. (3.19}

Problem P : Find the stress field o [0, 7] < ‘H such that

ait) € ety wte [0, T,
cr—m(t)LENE(t)) = 20 Wre Euat) . ae te(0,T) {3.20]

E"{[]:I =@ - [3.21}

Let us now remark that problems Py and /% are formally equivalent to problem 7.
Imdeed, if u represents a regular solution of the variational problem Py and o is defined
by & = £z{u}, nsing the arguments of (3] it follows that (u,a) is a =olution of the
mechanical problem P, Similarly, if & represents a regular selution of the variational
problem Py and « £ V is defined by & = E2{u) then, nsng the same arguments, it
follows that {u.e) iz a solution of the mechanical problem P, For this reason we may
consider problems Py and Pp as veriationsl formulations of the mechanical problem P.



Finally, let us also recall that the study of the mechanical problemn P using a different
variational formmlation involving a global stale varable was alveady done in (6.

Under the assumptions (3.1)-(3.4), in the next section we present existence and the
uniqueness results for the variational problems Fy and P,

4. Existence and unigueness results
The first result of this section 15 given hy

Theorem 4.1. Let (3.1)-(3.4) and [El.ll'.]] hold. Then there exists & nnigue solntion
of the problem Py having the regularity » € W0 T V).

Prool. The proof of theoremn 4.1 may be oblained using similar arguments as in [1].
However, for the convenience of the reader, we present here s sketeh of the proot. For
this, let ¥ € IN, h = %,, tn = nhifo=Ff0zF ¥no=0, N. Let tug | be the sequence
of elements of V7 given by

< Ee(tinpa )y e(t) — (2] 4 j{y) — j{=dTa) >

(4.1)
Z < fapr, o= 28220 5y Yo eV |, n=0,N-1
and let wy - [0, T] — T be the function defined by
=t ; : e s :
upn(t) = — (g1 —un)+ g YEE |t tuyr] » R=0,N—1, (4.2)

Using standard argumnents of elliptic variational inequalities, from (4.1} we oblain
that the seguence of functions (ux) given by (4.2} 15 a bounded sequence in the space
Wh={0, T, V)., So, by classical compactness argumcuts, il results that there exists
w & Wh™(0,T, V) such that, passing to a subsequence again dencted {# ], we have

up — uoin L0 V) weak = (4.3
iy — @ m LE(0,T,V) weak=. (4.4]
Having in mind (4.1)-(4.4) it results that u salisfes (3.18)-(3.19). Moreover, u is the
unigque solution of this problem,
The second result of this section is given by :
Theorem 4.2, Let {3.1)-(3.4) and {3.10) hold, Then there exists a unique solution
of the problem Py having the regularity o &€ W0, T, H).

Proof. Let us firstly remark that (3.20) is equivalent to the nonlinear evolution

equation
E7lat) + Mo Linlef)) 20 ae $£(0,T) i4£.4)

where iy denotes the subdifferential of the mdicator function 3w, ¢ given by



37

il if =€ Egq(t)
Prniz) =
+ oo if = & Raal(t).
Since the set Lga(t) depemds on timne, we shall replace [4.5) by & nonlinear evolusion
equation associated to a fixed convex set. For this, lel us introduce the following
NOGATIONS :

Yo={reH| «rev)zu+ile) = 0 Yo V) (4.6]
# = elf) (4.7)
F =d=0, O =og—ol0). {4.8)

It is easy to see that o is a solution of Fs Laving the repularty = © WL={0, T, H) if
and only if # € W={0, T, H) and

F)eDy Wel0,T],
cr—FETF =y 20 Wre By, aeon{l,T) (4.9

FO) =7, . (4.10)

Moreover, it results that the evolution problem (4.9}-(4.10) is equivalent to the following
Clauchy problem

ETIFH) + Sbe (FE) 30 ae t£(0,T) [4.11}

F0) = 7y (4.12)

where vy denotes the subdifferential of the ndicator function ¥g, . Let ns now remark
that Tp 1= a closed convex set in H and that from {3.10) and (4.8) we have 7 £ K.
Using now (3.1) and classical results of evolution equation (see for example [2] p. 188},
we ohtain the existence and the umguencss of a Tunetion 7 Wh=(0, T, H} solution
for (4.111-(4.12), which proves theorem 4.2

5. Equivalence results and mechanical interpretation

I this section we study the link between the solutions « and o of the vanational
problems Py and Py, The main result obiained here is the following -

Theorem 5.1. Let {3.17-(3.41,(3.10) hold and let {u, ) be a couple of functions
such that w: [0,7] = V and & : [0,T] — H. Let us also consider the properties :

i) u is the solution of the problem Py given in theorem 4.1 ;
ti) 7 is the solution of the problem % given in theorem 4.2 ;

ii1] @ and u are conuected by the elastic constitutive Laww

g = Fe(a) WieldT) (5.1)

Then, if two of the previous propertics are fulfilled, the remained one 1= alzo fulfilled.



Proof. i) + fii) = i¢) Let us suppose that ¢) and i) hold. Using F; and (5.1) we
obtain & £ I*Tf"]"‘:I:D, T, H) and

< aelv)—elt) 2 +ile)— i)z < fr—d =y YeelV , ae te(0,T) (52)
Taking now v = 2u and v = 0 in (3.2} it follows
< aefi] =g +3{u) = < foi >y ae te{0,T) (5.3
S0, from (5.2),(5.3) and having in mind the time regularity of o and f, we obtain
a(t) e Tty Wt e[0T (5.4}
Moreover, from (3.9} we obtain
< 7 E(n) =y +j(d) < fia>y ae.te(0T). (5.5)
Using now (5.31,(5.5).(5.1) and (3.7) we ohtain that 7 is the solution of the problem P,

i)+ 1) = 7i1) We suppose now that 1) and #) are fulfilled and let us introduce the
funetion @ defined by

7 = Ee(u) € WI™(0, T, H). (5.6)

Ag it results from the previous step, we obtain that & is a solution of problemn P, Using
the nniqueness part of theorem 4.2 it resules

o = d. (5.7)
So, from (5.7) and (3.6) we obtain i),
i) + i#i) = i) Lel now suppose that i1} and 23} hold. We have
<r—FT,E g >y=20 ¥rel; ., aeon((T) (5.8)
where & € W0, T, H) denotes the function given by (4.8).(4.7). Let us introduce the

apaces W and W defined by

W ={veH | v=0o T},
W=1zeH|Divz=0in 12, z0=0 on T;UTy -
For all » € W, using (2.9) and {4.6), we obtain #(t) 4+ z € Ty ¥t & [0,T] . Therefore,
taking 7 = 7 + # in (5.8), it results < z,£ 16 2 = 0 V2 € W, a.c. on (0,T). Since
the orthogonal complement in H of W is the space [ W) (see for instance [5] p. 34),

having in mind the regularity o € W™ (0, T, H] and the properties of the deformation
operator £ 1 W — W), there exists ¢ & L™{0.T. W) such that

Ela =elf) ae. on (0,T) (5.9
We shall prove that ¥ € V' a.e. on {0, T). Indeed, using (5.8) and (3.9} we obtain
<T—F, (@) >0 ¥reky , ae on (0,T) (510}
arud let t £ _ﬂ. T| such that

<t -dit), s(Ht) >x =0 V¥re S (5.11)



Let us recall that, since rmeas [ > 0, W iz a Hilbert space with the Inner product
< u, v Ew=< alul, £(v] =y Moreover, since V' is a closed subspace of W, u(t) ¢ V,

o

there exists ¥ € H such that
T, e{vl>x =0 YeelV (5.12)
< T, e(t(t}) =n < 0. {5.13)
From [5.12) and [4.8) it follows that A7 € £ ¥A = 0 and, using (3.11), we obtain
A Foe(v(t)) my = < TE) e(w(l)) = . (0.14)

Using now {5.13) and passing to the limit in (5.14) when A — oo we obtain
a contradiction. So, it follows that the element ¥ previously defined is such that
eV ac. om0, T)ie ve L0 T,V

Taking now

i
ﬂ{f_,l—f ﬁ[#;‘ﬂis + g N |_"..T] ':.q:l.].ﬁ_l
]

and using (3.3}, we obtaiu & € W0, T, V). Alter integration, from (5.9) we obtam
-!' 1
a(t) = [ Feilis))ds +my ¥Le [0.T),
0

and, using (3.7) and (5.15], it follows
a(t) = Eel@it)) W= [0,7]. (5.16)
Sa, from (5.1) and (5,16} we have
sl = elu) Wi [0,T).

Having now in mind that w(f) & ¥, @(¢) € ¥ for all t £ [0, 77, nsing Korn's megqualily
(271 it results that u = u for all £ £ [0,7"]. Therefore « £ Wl=(n, T, V).

Using now the subdifferentiability of 7 on V' and (2.8) it results that there exsts
7 1 0, T| — H such that

< Fe(v) —e(@) »n + ilv) — jlu) = < fio—u >y Ye £ V., ac.on (0,T). {3.17)
Taking now v = 2u and ¢ = 01n (5.17), we have
< Telu) =x +ju) =< i >y ar on (0T i3.13)
Using again (5.17) and {5.18) we obtain that T &€ Da4(t] e.s on (0, 1) and, by #) and
i), 1k results
< T, e(u) vy = < ae(u) =y ae on (0,T) {3.19)
Using now (5.19) and (5.18) we obtain

< fo =y =< oe(n) >y +jle) ae on (0,T) 1520

Finally, from {5.20), ) and s} we obtain that w is a solntion of the problem By,
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Mecanical interpretation. The mechanical interpretation of the results obtained
n theorem 5.1 i the following -

1) if the displacement field « 15 the solution of the variational problem P then the
atress field o associated to « by the elastic constitutive law o = Ez(u] 8 the solntion of
Lhe variational problem B

2) if the stress field & is the solution of the variational problem P; then the
displacement field u associated to o by the elastic constitutive law o = £=(u) is the
solution of the variational problem Py,

31 if the displacement field u is the solution of the problem ) and the stress field o«
is Lthe solution of the problem Py then u and o are connected by the elastic constitutive
law o = Eclu).
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