Buletinul Ştiinţific al Universităţii din Baia Mare Seria B, Matematică-Informatică, vol. XII (1996),41-44

Dedicated to the 35th anniversary of the University of Baia Mare

SUFFICIENT CONDITIONS FOR THE COMPATIBILITY OF SOME SYSTEMS OF CONVEX INEQUALITIES

Mircea BALAJ

Ky Fan studied in [2] the existence of solutions for some systems of convex inequalities involving lower semicontinous functions defined on a convex compact set in a topological vector space. [All the topological vector spaces considered in this paper, t.v.s. for short, are real and Hausdorff.] Particulary, he proved the following theorem:

THEOREM 1. Let X be a nonempty convex compact subset of t.v.s. and let \mathcal{I} be a family of convex lower semicontinuous functions $f: X \to J-\infty \infty f$. Then the following conditions are equivalent:

There exists an x ∈ X such that:

$$f(x) \le 0$$
, for all $f \in \mathcal{J}$.

i.e., this system of inequalities is compatible.

(ii) For any $n \in \mathbb{N}$, and $\alpha_j \ge 0$ with $\sum_{j=1}^{n} \alpha_j - 1$ and $f_1, f_2, ..., f_n \in \mathcal{I}$ there exists an x such that:

$$\sum_{j=1}^{n} \alpha_{j} f_{j}(\mathbf{x}) = 0.$$

N. Shioji and W. Takahashi [6] and Shioji [5] extend the Ky Fan's theorem to so called "convexlike" functions with values in]-∞,∞[. Next we needed a special case of Theorem I in [6]:

COROLLARY 1. Let X be a nonempty convex compact subset of t.v.s. and $\{f_i, f_2, ..., f_n\}$ be a finite family of convex lower semicontinuous functions $|f_i: X \to [-\infty, \infty]$. Then the fallowing conditions are equivalent:

(i) There exists an $x \in X$ such that:

$$f_i(\mathbf{x}) \leq 0, \quad \forall i \in \{1,...,n\}.$$

(ii) For any $\alpha \in S_n$ there exists an $x \in X$ such that:

$$\sum_{i=1}^{n} \alpha_{i} f_{i}(x) \leq 0.$$

Here we denote by Sn the set:

$$S_n = \left\{ \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n \colon \alpha_1 \geq 0, \dots, \ \alpha_n \geq 0, \ \sum_{j=1}^n \alpha_j = 1 \right\}.$$

In this paper we obtain some sets of sufficient conditions for the compatibility of systems of convex inequalities (Theorems 2 and 3, and Corollary 2). As a by-product, we derive an intersectional result for minimal subfamilies of closed sets with convex complement (Theorem 4).

In our proofs we shall need the following lemmas proved in [1]:

LEMMA 1. Let X be a nonempty convex compact subset of a t.v.s., k and l two positive integers with $k \le l+1$, and A a family of closed convex subsets of X such that:

- For any subfamily A' of A which card A'-k, we have ∪ A'=X.
- (ii) For any subfamily A' of A which card A'=1, we have ∩ A'≠Ø.
 Then ∩ A≠Ø.

LEMMA 2. Let X be a nonempty convex subset of t.v.s., k and l two positive integers with $k \le l+1$, and A a family of convex closed subsets of X satisfaying the conditions (i) and

(ii) in Lemma 1. Then ∩ A≠Ø.

THEOREM 2. Let X be a nonempty convex compact subset of a t.v.s., k and l two positive integers with $k \le l+1$, and \mathcal{J} a family of convex lower semicontinuous functions $f: X \to]-\infty, \infty]$ satisfaying the conditions:

(a) For any k functions $f_1,...,f_k$ in $\mathcal I$ and any x in X there exists an α in S_k such that:

$$\sum_{j=1}^{k} \alpha_{j} f_{j}(x) \leq 0.$$

(b) For any 1 functions $f_1,...,f_l$ in $\mathcal I$ and any α in S_l there exists an x in X such that:

$$\sum_{j=1}^{l} \alpha_{j} f_{j}(x) \leq 0.$$

Then there exists an x in X such that:

$$f(x) \le 0$$
, for all $f \in \mathcal{J}$.

Proof. Denote by \mathcal{A} the family of all sets $A_i = \{x \in X: f_i(x) \leq 0\}$ where $f_i \in \mathcal{I}$. Since the functions $f_i \in \mathcal{I}$ are convex and lower semicontinuous, the corresponding sets A_i are convex and closed in X. The proof of Theorem 2 will be achieved whenever we verify the conditions (i) and (ii) in Lemma 1 for the family \mathcal{A} .

If \mathcal{A} does not satisfy the condition (i), than there are k functions f_1, \ldots, f_k in \mathcal{I} and an x in X such that $f_j(x) > 0$ for all $j \in \{1, 2, ..., k\}$. But in this case for any $\alpha \in S_k$ we have:

$$\sum_{j=1}^{k} \alpha_{j} f_{j}(x) > 0, \text{ which contradicts condition (a)}.$$

Now, given a subfamily $\{A_1,...,A_l\}$ of 1 members in \mathcal{A} , i.e. $A_j - \{x \in X: f_j(x) \le 0\}, f_j \in \mathcal{J}$, then condition (b) together with Corollary 1 yield an x in X such that $f_j(x) \le 0$, $\forall j \in \{1,2,...,k\}$, i.e., $A_1 \cap ... \cap A_l \ne \emptyset$.

THEOREM 3. Let X be a nonempty convex subset of t.v.s., k and l two positive integers, with $k \le l+1$, and \mathcal{J} a finite family of convex lower semicontinuous functions $f: X \to]-\infty, \infty]$ satisfying the conditions:

(i) For any subfamily $\{f_1, \dots, f_k\}$ of \mathcal{I} and any $x \in X$ there is an $\alpha \in S_k$ such that:

$$\sum_{j=1}^{k} \alpha_{j} f_{j}(x) \leq 0.$$

(ii) For any subfamily $\{f_1, \dots, f_k\}$ of \mathcal{I} there exists a compactsubset X_0 of X such that:

$$\sum_{j=1}^{l} \alpha_j f_j(x) \le 0, \text{ for all } \alpha \in S_l \text{ and all } x \in X_0.$$

Then there exists an x in X such that $f(x) \le 0$ for all $f \in \mathcal{F}$.

Proof. Apply Lemma 2 to the family A of sets A₁ in the proof of Theorem 2.

Another result concerning systems of convex inequalities we derive as application of the next intersection theorem.

THEOREM 4. Let X be a nonempty convex subset of a t.v.s. and A a finite family of closed subsets of X having convex complements, i.e., $X \setminus A$ is convex for all $A \in A$. If $\bigcup A = X$ and $\bigcap A = \emptyset$, that there exists a subfamily A of A such that $\bigcup A' = X$ and $\bigcap A' \neq \emptyset$.

Proof. Let $A' = \{A_1, ..., A_k\}$ be a minimal subfamily of A satisfying $\bigcup A' = X$. To prove $\bigcap A' \neq \emptyset$, suppose the contrary. Then the family $\{D_1, ..., D_k\}$ is an open covering of X whenever we put $D_1 = X \setminus A_k$. Denote by $\{p_1, ..., p_k\}$ a continuous partition of unity corresponding to this covering, i.e., each $p_i: X \rightarrow \{0,1\}$ is a continuous function which vanishes

outside of
$$D_i$$
 and $\sum_{l=1}^{k} p_l(x) = 1$, for every $x \in X$ (see [3]).

Since $\{A_1,...,A_k\}$ is a minimal subfamily of \mathscr{A} satisfying $A_1 \cup ... \cup A_k = X$, for each $j \in \{1,...,k\}$ there exists $x_j \in \cap \{D_i: i \in \{1,...,k\} \setminus \{j\}\}$. Now define the mapping $p: X \rightarrow X$ by:

$$p(x) - \sum_{i=1}^{k} p_i(x) \cdot x_i, \quad x \in X$$

and put $K = conv\{x_1,...,x_k\} \subset X$. Then p maps the nonempty convex compact set K into itself. Remark that K is homeomorphic with the closed unit ball of the Euclidian space \mathbb{R}^n , where $n \le k$ is the dimension of the vector subspace spanned by K [4, ch I, Th. 3.2], so that by Bronwer's fixed point theorem, there exists $z \in K$ such that p(z) = z.

Let $I = \{i \in \{1,...,k\}: p_i(z) > 0\}$ and $J = \{i \in \{1,...,k\}: p_i(z) = 0\}$. If $i \in I$ then $p_i(z) > 0$ hence $z \in \bigcap \{D_i: i \in I\}$. Furthermore, $J \subset \{1,...,k\} \setminus \{i\}$ whenever $i \in I$, hence by construction $x_i \in \bigcap \{D_i: j \in I\}$, so that the convexity of D_j implies:

$$p(x) = \sum_{i \in I} p_i(z) \cdot x_i \in \bigcap \{D_j : j \in I\}.$$

Therefore, $z = p(z) \in \bigcap \{D_i : i \in I \cup J\}$ which contradicts $\bigcup \{A_i : i \in I \cup J\} = X$.

COROLLARY 2. Let X be a nonempty convex compact subset of t.v.s. and \mathcal{I} a finite family of convex upper semicontinuous functions $f: X \to \mathbb{R}$ satisfying the conditions:

(i) For each x ∈ X there is an f ∈ I such that f(x) ≥ 0.

(ii) For each $x \in X$ there is an $g \in \mathcal{I}$ such that $g(x) \le 0$.

Then I contains a subfamily I' with the properties:

- (i) For each $x \in X$ there is an $f \in \mathcal{I}$ such that $f(x) \ge 0$.
- (ii) There exists an $x \in X$ such that $f(x) \ge 0$ for all $f \in \mathcal{J}'$.

Proof. Apply Theorem 4 to the family \mathscr{A} of all sets $A_f = \{x \in X: f(x) \ge 0\}$ associated with each $f \in \mathscr{I}$.

Remark. If $X = \mathbb{R}^n$ in Corollary 2, by Helly's theorem it follows that card $\mathcal{G}' \leq n+1$.

REFERENCES

 Balaj, Finite families of convex sets with conveex union, "Babeş-Bolyai" University, Res. Sem. Preprint Nr. 7 (1993), 69-74.

2. K.Fan, Existence theorems and extreme solutions for inequalities concerning convex

function or linear transformation, Math. Z. 68 (1957), 205-217.

 C.Meghea, Foundations of Mathematical Analysis, (Romanian), Edit. Ştiinţifică şi Enciclopedică, Bucureşti, 1977.

4. H. H. Schaefer, Topological Vector Spaces, Mac Millan Co., New Zork, 1966.

 N. Shiogi, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111 (1991), 187-195.

 N.Shiogi and W. Takahashi, Fan's theorem concerning szstems of convex inequalities and its applications, J. Math. Analysis Appl. 135 (1988), 383-398.

Received 01.09.1996

University of Oradea
Department of Mathematics
str. Armata Română, 5
RO-3700 Oradea
ROMANIA