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Abstract

The aim of this paper is to prescol OUT PIOERESs in the theory ol thermal
instability facilitated by the use of the Mathematica|l]. This progress enables
the exact numerical solution of long-standing unsolved problema inthe lin-
car theory of thermal convection n horizontal loyers and spherical shells of
Newrtoming or viscoclastic fluids in the presencs or absence of rotation and for
magnetic Lold.

Tn the first part of the paper. our recent direct method for solving the reverad
churacteristic value problems asising in the linear theory of busvancy-driven
thesrmal convection in a horizontal layer of fluid heated from below in the
ahaence of presence of rotation and for magnetic field is presented. Necessary
and sufficient conditions for the existence of non-Leivial solutions of several
characteristic value problems are derived in the general case, and then thce
method is favourably applicd to study Lhe thermal instability of a layer coo-
fined by any type of boundaries (Bénsard problem), "1he method is rigorous,
simple to apply, applicable Lo any type of boundarics: free, tigid , mixed, por-
feetly conducting or non-condacting, and moreaver, it is easily inplementad

using Mathemation. Some uuselved convection problems with rotution and
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magnelic feld acting simultaneonsly can be tackled [or the first time nsing
this method.

As u second illuseration of our progress, the thermal instebility of an in-
compreasible fnid sphere heabed within and in equilibrivin under its own
gravitation is considered. Using the linite difference method in conjuncrion
with Muthematica, a simple two step algorithm iz derived 10 salve the eigen-
valne problem which describes the onset of convection. IL iz shown Lhat with
lirerally only a low lines of code we can obtain with vase acenrate resnles
comparable with the heat currently available rosults nbtaued by very Leclions
laborious "exact” techniques or the wost ineisive fapproximate” varistional
rechuiques. While this aualysis is limited to the case of thermal justability in
a homogencous sphere, the method can be peadily applied to the treatioent

ol eomvection in spherical shells.

1 The Bénard problem

Consider a horfzontal laver of fluid in which an sdverse temperature gradient is
maintained by heating the underside. Since the Auid at the bottom is less dense
than the fluid st the top, chere will be a tendency on the part of Lhe fiuid 1o
cedistribute itsell. Howewver this tendency will be inhibited by ils viscosity and we
expect that Lhe adverse temperature gradient st exceed o certain value before the
instability eun manifest itselt.

Ruyleigh established the s ability or instability of & |lnyer of Huid heated from

helow i dependent on Lhe value of the non-dimensional paramerer § Rogleigh nurrefur]
P RTER 3

p= 2 (1]

R

where g denotes the acceleration due to gravity, 4 the depth of the layer, 3 the
uniform sdverse temperatnre gradient which is maintained, and o, gaml ¢ are the
coelficients of volume expansion, thermometre conductivity. and kinematic viscosity,
respectively. The instability sets 0 when B exceeds a certain eritical valus K. The
prinvipal theorctical abjective ia to determine [T,

Using the normal mode analvsiv, the linewr equations aoverning the marginal

aate for the onset of stationary convection are (2]
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(1% — a®V*W = R0 (2)
(D = a?) = -W (3]

subject to the boundary conditions for the three tindary types

(A) two free boundaries

W=DPW=8=0 =01 {4)
() two rigid boundaries
W=0D¥F=0=0 z=0,1 {5

(1) one free and one rigid boundary
W=DW=8=0 z=0

W=DW=8=0, z=1 (6]

where [7 = d/dz, W and & are the perturbations in the z-components of velocily
and temperature respectively, and @ is the wave number.

Let x(2] be a real f-dimensional vector function of & and (2] = Wiz}, 25lz) =
©(z). Equations [2) and (i) are equivilent to the Gth order system of linear first

order dillerential equations.

., = wmep 1=12,4.0 (7)
i F] ' . e
ry = —hIy +2-EI-£:[-'H [ HE—EI; .__h'll
_.II." = —7 I 1 1 f"l
¥ = —Tha'rs L)

where 1) = dx;/dz. The boundary conditions defining Lhe three different. types of

Lonndaries arc:

(A

=Ty =228, 2=0,1 i 10
(B)

vy =Ty =5, z=101 (11}
L
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and
T =Ty =1%p 2=1 f12)
Equations {7}-(9) subject to Lhe boundary conditions {100,011 or [12] constitute
L charaeteristic value problem Lo the determination of i (and hence of R}, using
our recent direct method for solving several characleristic value problems, described
belowe,

Let m, nand fi be Lhree integer scts
m={my,- . Mup 1Zmy <my <<y < 2,

n={n, - M}, 1€ <ng< - <t =20,
i={12---,2n}—m, 1=n; < < i, 2N

and let M[m,fi] be the matrix obtained by taking the clements of M with row
subseripts from m and column subscripts from .

Consicer the 2n % 2n mixed boundary value problem on the = interval (0, 1)

if : .
Z = Al (13)
iz : *
{0 = 0 for i€Em i1d]
(l) = 0 for i€m {15)
where X = [z1. 55, - Ton| T2 A} = Alp1.--- ) 12 8 20 x 20 matrix with & g's a4
i L |I' 3

its parmincters, The problem is to determine the values of g's such that the above
system is solvable. We have obtained the following theorcm which lorms the basis
of our method for solving the ssveral characteristic value problems arising In the

linear theory of thermal convection.

Theorem 1 The neceszsary and suyffesend condition for the emstence of non-irivial
] i

solutions of (13)-(15] s
det( E{F) =0, where B{f) = explA{d)}[m, . i16]

Furthermaore, the nember of linearly independent selutions eguals the dimension of

the wull spoce of I
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The ubwwe theorem shows that the characteristic values are simply the solutlons
ol the algebraic equation (16}, easily obtainable using sone standard numerical
method such ss the Mewton-Raphson method. In Lhermal vonvection problems.
Lowever we are inferested in finding the cviticel or minimum oies aMong 1.hege
walues, e.p. the critical Rayleigh nunber R, Generally, if we wani to find the
spinimm characteristic value for, say, the first parsmeter gy, our problerm can be

formulured as 8 constrained optimisation problem:
Minimize 5, subject to det{E(#)] =i

Many subroutines are available for solving Lhis constrained nonlinear programming
prablem. One may fiest comvert this ronstrained problem Lo an unconstrained one
by introducing a penalty term in the ohjective function, then apply unconst rained
optimisation subrontines. O numerical exporiments show that Lhis optimisaiion
approach is not a very good way to find the critical values, while the following
alternarive approach has proved suceessll.

As we know the equation
f7) = det{E(7) =0

acnerally defines a fanction
p1 = Pz - )

in some open set of B0 AL the critical value of,

i)
L0 f=Zek
o ’

Implicil differentiation gives
i,:i=f_1. i=2 .k
|'j||'_|= 1 H -

Thus the critical value of pp can be found by solving the system ol k equations

Fo=0 (17)
!Ef_lr ot {:I gk E ||;' agu
-ﬁlll:l; - b L= 1 g It AL

Wi sumrnarise this result in Theorem 2.
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Theorem 2 The necessary rondition of p being o critical value 4 that there are

ot i=12,--- k such that g = (p). .- 0%) satisfics the equations (17)-[18).

In muost cages these partial derivatives are not given explicitly, so we replace them
bv difference quotients with appropriately small Doy, @ = 2,00+, k.
Returning now to our characteristic value problem (7)-(12), the corresponding

zerz m aned n in Theoremn | Tor the above bonndary tvpes are
(AYm=n={1,3.5}; (Bim=n={1,235} and ([C)m= {1.3,5}, n={1,2,5}

respectively.

Let fla, B) = det(E{a, R} and g(a, R) = ([{a+da, R]—flo-Aa, R)) 280, A =
10-19, Solving the system (17], (18) f = ¢ = 0 [or ¢ and R, we readily obtain with
absoluie case using Mothemation Lhe following results for the three houndary types,

which coinride with the results of Chandrasekhar [see pp.43 [2]).

- Boundary Tyvpe i . f i ’|
(4) 222144 | 657511 | 43821206 | 116611E6 |

0 (B) 3.11632 | 1707.76 | 1.07T240E-6 | 5.63881E-7
(2 2.68232 - 1100.65 | -1.195T72E-6 --*I.ESESIE--E-_

Using Mathematica with mla_, B representing the matrix Ale, R}, and faja_ R
frla_, R.|. fefa, L] representing fio. R} = detiE{a, RB)) for the three boundary
types (A), (B) and [C) respectively, the contour graphs fla, B) = 0 wore readily
obtained. Notice the ense of change of boundary conditions, by weerely changing
somne numbers in fla R M

From these contour graphs we can easily obtan the initial apprexmations for
e critical values o, and .. The corresponding accurate values were then found
by solving the equations f = g = ) using the Mathemation subroutine Find Rool

with g [a_, R.| representing g.

|r|r:l-_|l.1-_lr..=

s Ro):={40,1.04L0,0},{0,0,10.0,0},{0,0,0, 1,00},
{-a"4.0,2 a 2,0, 20k 40,0.0,000 1} {-1,0,0.0,.7 2,0}
Inf8l:=

fafa R:=Det | MatrixExp{m[a R][{1.3.5)} {2.4,6}]]



131

ClontourPlot[fula,R],{a.0 1,8},{R.500, 7000}, Contours— {0},
ContourShading — False, PlotLabel — " Two free boundaries”,

AesCieigin —+ Automatic, Axes — {True, 'l ue}, AxesLabel — {a, 11}

E
Two free bounderies
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Cht /5] =
-ClontourGraphics-
Infdf:=
aafa_ R:=0.5 107 {10)(fala+10"( 107, R |-fa[a-10" (- 107, K[}
FindRont|| fafa,1t|==0gnla R]==0} {8,2.0.2.2} {11,500,700},
Outfaj=
(o — 222144, it — 657.511}

Inf6:=

fhin_,R_]:=Det[M strixExp mfaR]]([{1.2,51.{3.46}]]
ContourPlot|bfa.R].{2.0.1.8}{R, K00, 7000}, Contours—» {0},
ContonrShading PlatLabel— " Two rigid boumdaries”

AxesOrigin— Automatic, Axes — {True, True}, AxesLabel — {a, 1}]
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Teo ¥igid boundaries
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Out{Ti=
ContourGraphics-
8=
ehlas B J:=005 1010 {fb[a+107(-10),R]-h{a- 10 (-107.R]}
FindRoot[{ b[a,R]==0.gbla.R]==10} a,3.00.3.2},{ R, 1500, b4 Wit
Chut =
[a — 3.11632. R — 1707.76]

Inf10f:=

fela_, It |:=Dwt [Matrix Excp[mlaR][{L.3.3}, 13,461
ClontourPlot[fela,R] {s.0.1,8}.] 1000, 70007, Contours — {0},
ContourShading — False, PlotLabel — " Wixed hounduaries”.

AxesOrigin— Automatie, Axes — { True, True}, AxesLabel — {a. R}
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Hixed boundaries
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Cut{11{=
-ContourGraphics-
Inf12):=
gefu Bt ]:=0.5 10"10 {fc[a+107(-10} JF]-fela-107(-10),R])
FindRaot[{fe]s,R|==0.gc[n.R]==0}{2.2.52.7} AR, 100601200 ]
Out{13]=
[n — 368232 R — 1100.65}

92  Thermal instability of a fluid sphere

The thermal instability of an incomprassible fluid sphere heated fromn within by A
wniferm distribution of heat sources and in equilibriam nnder its own gravitalion
has been considered by Chandrasekhar [2], Jeffreys and Dland [4], and Backus [1).
used on the principle of exchange of stabilities, the linearized couations (derived
in [2] and [3| hence not repronduced here) governing the onsel of stationary convectinn
tn 1 sphere with a free bounding swrface, may pe eomnbined into the single sixth order

differential equation for the perturbation iu the racial velocity W (r)

DAW + 6/r DPW — 6/r" D'W + 2, W =1} (1)
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subjet to the bonndary conditions
W=D'W =D'W+4D'W =0, at r=01 (201

where ) =d/dr, a << 1 and o may be regarded as "Rayleigh® number,

& solutiom of Equation (19] which satisfies the bonmlary conditions (20} and 1=
not zero everywhere is possible only when ) takes on a sequence of determinate
characterizlic values. In the present connection we are interested only in the lowesl
of Lhese characteristic values, the eritical T ltavleigh” number al which POHLIVECTION
will begin in an initially ool sphere which besgins to warm up internally, or the
" Rayleigh” number at which convection will cense in s sphere of Nuid losing heat
through its surlace.

The above cizenvalue problem for the determination of the lowest eigenvaliue o
has heen considered in |2, 3, 4] using a varlety of excessively lengthy and extremely
labarious techniques. Jeffreys and Bland [4] computed the lowest pigenvaliue by an
effertive variational provedure as well as an " oxact” procedure applicabile only for
the special case of a [ree bounding surface,

Chandrasekhar [2] used a more incisive variational technique to obtain quite
acciurate eatimates of the lowest eigenvalues.

Variational estimates of the eigenvalues however sufler from the dizadvanlage
that they are upper bounds, which in principle cannot bracket the true alues. This
has promprted Backus [4] to compute the cigenvalues by a veey laborions techuigue
which braclets and exhibits the eigemmiunes as the weros of & cortaim explicit mmero-
morphic linction of a single complex variable and, as a by-product . yields expansions
for Lhe eigenfunctions in series of spheric al Bessel finctions.

This Lias recently motivated us Lo try and solve the problem by developing a " nen-
tedious” and user friendly practical approach. Surprisingly, to our best knowledge
and beliel no one has attempred to solve the problem using the well known finite
difference method, even in recent years with the availability of modern computing
sofrware.

With thiz approach, we subdivide the interval [, 1) in N subintervals of width
h=1[l—-a)/¥. Wedenote the point ry = a + ihoarel wy = Wirnd, i=0.1, N,

Using the standard central dilference appreximalion of derivatives, Fguation (19)
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and boundary conditions {20] reduce Lo the linear syste
Al i =10 (21)

where A(ry) s an [V — 1) x (& — 1] square matrix with a parameter ¢ and & =

{ary, Wa, =+ - WS ). The requirement for Lhe existence of non zero solulions wf is
deti Aje) = 0. (22}
Further, it is easy to see that the malrix Aley) has the lorm
Aley} =M + 2010y [23)

where M is a spurse conslant matrix and Ty 15 the identity matrix of order N —1.

Therefore Equation (22] can be equivalently slated as

¢ iz an eigemvalue of the matrix —0.50.

For our problem we scek the lowest eigenvalue of thiz matrix. The algorithm is
henee very simple. It only consists of two sleps:

Stepl From Equation (14} to form the matrix M using finite difference approx-
inations for derivatives,

Step2 Find the smallest elgenvalue of the matrix —(L5A.

The following code of Mathematica is the implementation of the shove algorithin.

Inf1f-=

a=_0.00001;

M =430

h=(1 - a)/{Nm~+1},

rik]=a + k*h;

m—Table[l[[i==j. -20/0"G -3/ {x[] "2*h"4),

Iifj==i+1,15/0°6 +15/(r[[*h"5) + 24/(x[i] "2*h"4],

Iffj==i+2,-6,/h"ti - 12/ (rli|*h"5) - 6/ (x[]]"2*h 4,

[[[j==i+3.1/h"6 + 3/(x[i]*4 5},

Iffj==i-1 && 1;1,15/h°G - 15/1e]i]"h"5) + 24/ (x[i]" 2*h"4),

[j==i-2 & i;2,-6/h°6 + 12/ (x[i]*h" 5} - 6/ (rfi] "2*h"4),

Lfj==i-3 && 133,176 - 3/(r[il*h’ A7,0],0].00,00,00.4),9],
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i, Nm.jNm|;

m|[1.1]j=m}[1,1]]+/h 6 - 12/ (r[1*R"5) + 6/ir[1] 270" 4)

+8*h j(a*(1-2*h/a)) (1/h76 - 3/ (r]1]*h"5)};

(1, 2]]=m[[1.2]-(1/h6 - 3/ (]1]*h"5)) (1+2"ha) F1-2%hfa);

w21 l=rm2, (1706 - /(521" 5)):

m['r-im,}hn]]—-m['_ﬁm:Hmﬂ ii/hC6 + 12/ (e[ Nm]*h 5} + 6/ (f[Nm] 2¥h’ 1]
_&%h f[1+2%h) [1/0h706 + 3/0c[Nm]*h5)};
ru['_I"-CIn..'*I]:r-.-l]'--m[:"-.'ru.N]:[;-l]f-:;ll.-"}l'E: + 3/(r|Nm!*h"5)) {1-2%h)/(1+2%h);
o [[Mm- 1, N =m([Nm-1.Nm]]-(1/h°6 3/ (e[ Nm-1]*h " 5) )
Eigenvalues[-0.5%m]| [N]]

Qut{lf=

091 .tz

Tn the abovie code Nm = N — | represeuls the dimension of the matrix A4 where
Liie murmber of subintervals N is chosen to guarantes the required acouracy.

A comparison of the critical ?Rayleigh”™ number o obtained by our algorithm
with the currently available results obtained by very laborious "exact” or  approni-

mate” variational technigques is shown lelow [or the case of & free boundin surince,
g

a i ; [ - i
falue obtained | Jeffreys & Dhawbos’ Chandrase- Jefireys e:.a_“

515 Bland ‘s khars vari- | Bland ‘s wvarl

our alporithm | "exact” valiae | Texact” value | alional value ational w;'.luf-l

S00] fiE a1tz anaL.2 0012 3202 ||

L |

This table shows the ineffectiveness of the variational precedure used by Jeffrews
and Bland (3] and the snperierity of Chandrasekhar’s [2] more invisive variat iomal
procedure, What is not apparent trom the table is the exvessive length and labour
involved in these technigues.

Onr simple two step algorithm readily gives with literally only a few lines of code
an accurate value for the critical "Rayleigh” number.

Finally, we wonld like to deaw aitention 1o the fuct that, since we only caleulare
the srnallest cigenvaliue of the sparse matnx 0.6M . Lhe toral pmount of calenlalion

i reduced if the inverse power method [5] is employed,
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3 Conclusions

Two illustrations of our recent progress in the theory of thermal instability facili-
tated by the use of Mathematica have been presented,

Firstly, the classical Bénard problem has been investigated using our recently de-
veloped direct method. This allows a simple, versalile, accurate, rigorous, unified
and trasparent treatment of the several characteristic valus problems arising in the
Bénard and previously unsolved related problems arising m the linear theory of
Lhermal instabilily in both Newtonian and viscoelastic inids,

Secondly, the Hnite difference method with a few modilications has been saeeess-
fully applie 1o obtain a simple and elegant two step algorithm for Lhe determination
of the eritical " Rayleigh” mumbwr for the onset of convection in a fhuid aphere heated
within., With the aid of Mathematics, this algorithm gives accurate resnlts with ab
solule cnse. A test comparison with the best currently available results obtained by
laborions techniques for the case of a fAuid sphere with a free hounding surface clearly
reveals the aceuracy, superiority and practicality of cur algorithm. The method can
be readily applied 1o the case of a rigid bounding surlace, and also to the treatment

of convertion in spherical shells,
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