Buletinul Științific al Universității din Baia Mare Seria B, Matematică-Informatică, vol.XII(1996), 163-168

ON THE PRIME RADICAL OF AN IDEAL IN AN (m,n)-RING

Maria S.POP

Abstract. The extension of the usual ring concept to the case where the underlying group and semigroup are respectively an m-ary group and an n-ary semigroup has been studied by Crombez [1]; some ideal theory aspects and the properties of the prime radical of an ideal in a commutative (m,n)-ring for m=n were investigated. In this note we prove that these properties remain true for $n \neq m$, too.

- 1. Definitions, notations and preliminary results An algebra $(R, +, \circ)$ is an (m,n)-ring, $m,n \in \mathbb{N}^* \setminus \{1\}$ if:
- (R,+) is a commutative m-group;
- (R, °) is an n-semigroup;
- 3) the following distributive laws hold for all choices of $a_1, \ldots, a_n, b_1, \ldots, b_m \in R$ and for all choices of $i = \{1, 2, \ldots, n\}$:
- $(a_1,\ldots,a_{i-1},(b_1+\ldots+b_m),a_{i+1},\ldots,a_n)_{,=}$ $=(a_1,\ldots,a_{i-1},b_1,a_{i+1},\ldots,a_n)_{,o}+\ldots+(a_1,\ldots,a_{i-1},b_m,a_{i+1},\ldots,a_n)_{,o}$ If, in particular, the n-ary operation (multiplication) is commutative, we call (R,+,o) a commutative (m,n)-ring.

In keeping the practice adopted for polyadic semigroups briefly notational convenience will be used, as follows:

$$X_1 + \ldots + X_j + X + \ldots + X + X_{j+k+1} + \ldots + X_m = \sum_{i=2}^{j} X_i + kX + \sum_{i=j+k+1}^{m} X_i$$

and

$$(x_1, \ldots, x_j, x_1, \ldots, x_j, x_{j+k+1}, \ldots, x_m)_o = (x_1^j, x_1^k, x_j^n, x_{j+k+1}^n)_o$$

Clearly that $\sum_{i=k}^{j} x_i$ and x_k^j , for k>j denote empty sequences.

Also, in writing long products (i.e. products having $p\equiv 1\pmod{n-1}$ factors) and long sums ($p\equiv 1\pmod{m-1}$ terms) we shall omit supplementary brackets (sum symbols \sum).

With these conveniences the distributive laws can be written

$$\left(a_{1}^{j-1}, \sum_{j=1}^{m} b_{j}, a_{j+1}^{m}\right)_{o} = \sum_{j=1}^{m} \left(a_{1}^{j-1}, b_{j}, a_{j+1}^{n}\right)_{o}$$

We may also denote recursively (Dörnte [2]):

$$a^{(o)} = a; \ a^{(1)} = ma; \ a^{(k)} = (m-1)a + a^{(k-1)} = (km-k+1)a$$

and

$$a^{\langle o \rangle} = a; \ a^{\langle 1 \rangle} = \begin{pmatrix} \langle n \rangle \\ a \end{pmatrix}_{o}; \ a^{\langle k \rangle} = \begin{pmatrix} a^{\langle k-1 \rangle}, & a \end{pmatrix}_{o} = \begin{pmatrix} \langle kn-k+1 \rangle \\ a \end{pmatrix}_{o}, \text{ for } k \in \mathbb{N}^{*}$$

It is easily verified that

$$(a^{\langle k_1 \rangle}, a^{\langle k_2 \rangle}, \dots, a^{\langle k_n \rangle})_o = a^{\langle k_1 + \dots + k_n + 1 \rangle},$$

and

$$(a^{\langle k \rangle})^{\langle r \rangle} = a^{\langle kr(n-1)+k+r \rangle} = (a^{\langle r \rangle})^{\langle k \rangle}$$

for every choice of the natural numbers k_1, \ldots, k_n, k, r .

Also we may conclude that

Proposition 1. In a commutative (m,n)-ring (R,+,o) the following exponential laws are verified

(4)
$$\left(\sum_{i=1}^{m} a_i \right)^{(k)} = \sum_{\substack{k_1 + \ldots + k_n = k(n-1) + 1 \\ 0 \le k_1 \in k(n-1) + 1 \\ (-1/2, \ldots, n)}} \frac{[k(n-1) + 1]!}{k_1! \ldots k_n!} \left(\begin{array}{c} (k_1) & (k_n) \\ a_1 & \ldots & a_m \end{array} \right)_{\alpha}$$

for all $a_1, ..., a_m \in R$ and $k \in \mathbb{N}$.

An element $a \in R$ is called an additive (multiplicative) idempotent if $a^{\{1\}} = a$ ($a^{(1)} = a$) and idempotent if both of these conditions are satisfied. An element $z \in R$ is called a zero of R if $\left(x_1^{i-1}, z, x_{i+1}^n\right)_o = z$ for all $x_1, \ldots, x_n \in R$ and for all choices of $i \in \{1, 2, \ldots, n\}$.

A zero, if there exists is clearly an idempotent of R; an (m,n)-ring may have at most one zero. If R is a (2,n)-ring, then R has a zero element.

The element \overline{a} will denote the aditive querelement of $a \in \mathbb{R}$, i.e. \overline{a} is the solution of the equation (m-1)a+x=a. It is easily seen that in an (m,n)-ring we have

(2)
$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} \overline{a_i}, \quad \forall a_1, \dots, a_m \in \mathbb{R}$$

(3) $(a_1^n)_{\sigma} = (a_1^{i-1}, \overline{a_i}, a_{i+1}^n)_{\sigma}, \forall a_1, \dots, a_n \in \mathbb{R}; \forall i \in \{1, \dots, n\}.$

Crombez, in [1], defined an i-ideal of an (m,n)-ring R as a non empty subset $U\subseteq R$, such that (U,+) is sub-m-group of (R,+) and $\binom{(i+1)}{R}U^{(n-i)}_{R} = 0$, where i has one of the values $1,2,\ldots,m$. If U is an i-ideal for each $i=1,2,\ldots,n$, then it is simply called ideal of R. An ideal U of R is called completely prime iff $(x_1^n)_o \in U$ imply $x_i \in U$ for some $i \in \{1,2,\ldots,n\}$, and primary if $(x_1^n)_o \in U$ and $x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n \notin U$, imply the existence of a natural number p such that $x_i^{(p)} \in U$. Hence, each completely prime ideal is a primary ideal. An ideal P is called prime iff for any

ideals U_1, \ldots, U_m with $\left(U_1^m\right)_o \subseteq P \Longrightarrow U_i \subseteq P$ for some $i \in \{1, \ldots, m\}$. Each completely prime ideal is a prime ideal.

The prime radical of an ideal

Definition [1] 1) Let $(R, +, \circ)$ be an (m, n)-ring and U an ideal of R. The prime radical \sqrt{U} is the set

 $\sqrt{U} = \{x \in \mathbb{R} \mid x^{(p)} \in U \text{ for some } p \in \mathbb{N}\}.$

2) An ideal U of R is called a radical ideal if $U = \sqrt{U}$.

Remarks. 1) $U \subseteq \sqrt{U}$.

2) The intersection of an arbitrary family of completely prime ideals of an (m,n)-ring is a radical ideal.

Proposition 2. The prime radical \sqrt{U} of an ideal U of a commutative (m,n)-ring R is an ideal of R.

Proof. Let $a_1,\ldots,a_m\in \sqrt{U},\ i.e.\ \exists p_1,\ldots,p_m\in \mathbb{N} \ \text{such}$ that $a_i^{\langle p_j\rangle}\in U;\ i=1,\ldots,m.$ There exists $k\in \mathbb{N},\ k=p_1+\ldots+p_m+\alpha,$ where $\alpha=\left[\begin{array}{c} \frac{m-1}{n-1} \end{array}\right] \ \text{if } n-1 \ \text{is a divisor of} \ m-1 \ \text{and} \ \alpha=1+\left[\begin{array}{c} \frac{m-1}{n-1} \end{array}\right] \ \text{otherwise},$

so that $\left(\sum_{i=1}^m a_i\right)^{(k)} \in U$, hence $\sum_{i=1}^m a_i \in U$. Indeed, by proposition 1, the equality (4) holds.

In every long product $\begin{pmatrix} \langle k_1 \rangle & \langle k_n \rangle \\ a_1 & , \dots & a_n \end{pmatrix}_o$ there is an $i_o \in \{1, 2, \dots, m\}$ so that $k_{i_o} \ge p_{i_o}(n-1) + 1$. Otherwise, if $k_i < p_i(n-1) + 1$ for all

$$i=1,\ldots,m$$
, then $\sum_{i=1}^m k_i < \left(\sum_{i=1}^m p_i\right) (n-1)+m$, $i.e.$

 $k(n-1)+1<\bigg(\sum_{i=1}^mp_i\bigg)(n-1)+m, \text{ hence }\alpha(n-1)< m-1 \text{ ; contradiction to}$ the choice of $\alpha\in\mathbb{N}$.

If $r_{i_a} = k_i - p_{i_a}(n-1) - 1$, because U is an ideal of R we have

$$\begin{pmatrix} \begin{pmatrix} (k_1) & (k_{i_0}) & (k_n) \\ a_1, \dots, a_{i_0}, \dots, a_n \end{pmatrix}_0 = \begin{pmatrix} \langle k_1 \rangle & \langle x_{i_0} \rangle & \langle x_{i_0} \rangle \\ a_1, \dots, a_{i_0}, a_{i_0}, a_{i_0} \end{pmatrix}_0 \in U$$

and $\left(\sum a_i\right)^{\langle k\rangle} \in U$.

If $a \in \sqrt{U}$, than $a^{\langle p \rangle} \in U$ for some $p \in \mathbb{N}$. Since (U, +) is a sub-m-group of (R, +), we have $\overline{a^{\langle p \rangle}} \in U$ and $\overline{a^{\langle p \rangle}} \in U$. But, by (3) we find recursively for k = p(n-1) + 1 that

$$\frac{\cdot}{a^{\langle p \rangle}} = \overline{a^{\langle p \rangle}},$$

hence $\overline{a} \in \sqrt{U}$.

Also, for all $x_1,\ldots,x_{n-1}\in R$ and $a\in \sqrt{U}$, since we suppose the n-ary operation to be commutative, we have

$$\left(\begin{array}{c} X_1^{n-1}, a \end{array}\right)_o^{\langle p \rangle} = \left(\begin{array}{c} X_1^{\langle p \rangle}, \ldots, X_{n-1}^{\langle p \rangle}, a^{\langle p \rangle} \end{array}\right)_o \in U, \text{ hence } \left(\begin{array}{c} X_1^{n-1}, a \end{array}\right)_o \in \sqrt{U}.$$

Then it follows that \sqrt{U} is an ideal of R.

In the same manner as in [1] we may show that in a commutative (m,n)-ring $(R,+,\circ)$ holds the following

Proposition 3. If U and V are ideals of R and $U^{(k)} \subseteq V$ for some natural number k, then $\sqrt{U} \subseteq \sqrt{V}$.

Proposition 4. If U_1, \dots, U_n are ideals of R, then

$$\sqrt{(U_1, \ldots, U_n)_o} = \sqrt{\bigcap_{i=1}^n U_i} = \bigcap_{i=1}^n \sqrt{U_i}$$

The following proposition can be proved in a similar way as proposition 2.

Proposition 5. If U_1, \ldots, U_m are ideals of R, then

$$\sqrt{\sum_{j=1}^{m} U_{j}} = \sqrt{\sum_{j=1}^{m} \sqrt{U_{j}}},$$

Proposition 6. The radical of a primary ideal U of R is a completely prime ideal contained in each completely prime ideal containing U.

Proposition 7. If U and V are ideals in a commutative (m,n)-ring R, then U is primary and $V=\sqrt{U}$ if and only if the following conditions are satisfied:

 $I^{\underline{u}} \quad U \subseteq V$

 $2^{2} \quad x \in V \rightarrow \exists p \in \mathbb{N}; \ x^{(p)} \in U$

 3^2 $(a_1^n)_o \in U$ and $a_1, \dots, a_{n-1} \notin V$ imply $a_n \in U$.

REFERENCES

- CROMBEZ, G., On (n,m)-rings, Abh. Math. Sem. Univ. Hamburg, 37, 1972, p. 180-199
- DÖRNTE, W., Untersuchungen über veralgemeinerten gruppenbegriff, Math. Zeit., 19, 1929, p.1-19
- SIOSON, F.M., Ideals in (m+1)-semigroups, Annali di Matematica Pura ed Applicata, serie quattro, LXVIII, 1965, p.161-200
- 4. TIMM, J., Kommutative n-gruppen, Disertation Hamburg, 1967

Received at: 02.09.1996