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ON SOME CONTINUDOUS RUNGE KUTTA METHODS
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abstract. Continuous half-explicit Runge Eutta methods for
differencial -algebraic system of index 2 are considersd.

p family of continuous half-explicit Runge-Rutta methods of uniform
arder p=4 and s5=6 stages is derived.
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1. INTRODUCTTON
Many real problems from mechanics, physics, enginesring etc. CAN [$1=
madeled by initial value problems for differential -algebraic system
of the form

e - yix) s Fiwix),z{x)),
[1.1.D) o=glyixt),
i R vix,) =¥, z(x, ) =2,

where f:B™R®, o:B"-Rf, x,€la blck, v eR®, z,€R".
We apsume that the vector functions F={L  Fo.ur-e L) and

g={ga,g&,,..,gmj are nonlinear and Chey are sufficiently smooth

syuch that the matrices

a1, (ﬁrf] ;e :

! i

y) = i |, £y, = 23 |+ I=T, k; F=1.m,
ot [ ﬂFj] Yo BT

are cotinuous and the consistency conditions

.3 gly =0, gity) £1(¥,. 2.} =0,

are sarigfied. It is also agesumed that 1n a neighbourhood of the
aplution of {1.1) - {1.2), there axigts the bounded inverse
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zo the problem {(1.1) - {1.2) has index 2.

an example of problems of the form {(1.1) - {1.2) is the multibody
swgtem with comgtraints on the wvelogity |evel, see [8]. Also, the
differential equations with discontinuities in the right gide,
leads to systems of the form {1.1}. Much works has been devoted Lo
development of numerical methods for problem (L.1}-(1l.2},
egpecial ly implicit Runge - Kutta type methods, [5], [7]1, [&] and
half-explicit Rungs - Futlba methods, [1]. In the last years many
authors derived so called continuous Eunge - Kutta mathods for
mumerical solution of initial value problems for differential
systems, [31, [41, [5]. (71, (101, [111, [12]1, [14].

The present wark is dedicated Lo extension the applicanilitcy of
rhese continuous methods Lo rhe numerical sclublon af the problam
(1.1 - (1.2} af index 2.

2. PRELTMIMARY RESULTS

1f we use the works of Hairer, Lubich and Roche, [9], and Brasey 4ll
Harier [1], we can give
DEFINITION 2.1 A conbinuous half-explicit Runge - KubLta type

methods with & stages for the y{x) = component of the solution of
the problem (1.1} (1.2) praovides a continuous
spprodmation wix] Lor S interpolant w{x) | for the exact soluticn ix).
by using a uniform mesh of [a.51.

{a=fﬂ{}:1{- N .{rﬂr:b} ¥ JE“_.L—H.! ':.111,- i’l; hr_.I,

and the following relations

i=1

(2.1) f,-,f='!-"_._+h E afjf(}rﬂjzﬂ}
F=1
':2.2:' ﬂ=g;fn_.':|.- iplizrr'!I-nlsJ

(2.3} ulx,+8h) =y, + 0 E b (0) £{Y s Ty
1=l

(2.4} p=gilulx,+8m), 8€[0,1], n=0,1,2,..:.
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where h,{8), i=T1,F are polynominals of degrea at most p, D being
the order of the method and b;(0) =0, i=1,8; a,;,, i=Z.8, F=T,7-1

are real parameters. The value y,, n=0,1,2,... are Lthe solution al
local problem given by (1.1) and v(x,) =y,. Ws consider like in

{1.3) for n=0 chat glwv,) =0.

DEFINITION 2.2 The half-sxplicit continucus Runge Kucta
method dafined by {(#.1) - {2Z.4) has the uniform order p, if p is
the larges integer such that

max |y (x,+BR) —uix ~8h) |=0{R""),

Jalal

where y{x) is the y- component solution of (1.1} - 1 R
satisfying the local condition

vix,) =ulx)=v,, 0=0,1,2....

and ||¢| is any norm on R,
REMARE 2.1 Tt in known that a discret Runge - Kutta method,

that is b, are constants, the order of the method (called nodal

order) is greater or egqual to the uniform order of the
corregponding to continucus Runge - FKutta method .

REMARK 2.2 The coefficients a,, of the half-explicdit method

(2.1) -12.2) form a strictly inferior triangular matrix

6 o aJ . . . 0 5]
4., 0 0 . . . 0 ¥
As| dy 2; 0 . - . 0 o,
By, Hpg gy - - Hg g 0
and we sghall regquire
L=1
¢, =0, ;=Y. &y, i=2,3,....8"1, €,=1

a=1
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Then, the half-explicit continuous Rungs - Eutta method, can be
writen in an array

c|A
|B7.
with o= (0,0, ..., C)T and hT{8) = (h (8) . b, (8),....D,0(8)).

REMARE 2.3. For effectiv application of the half-explicit

continuous method (2.1)-(2.4) we proceed as follows: for i=1 from

i2.1) we get ¥, ,=y, and {2.2) will be satisfied. IL i=2, we
pbtain ¥,, from (2.1} and insert it in (2.2), we get & nonlinear
equation for &

gly +ha,, F(¥,,.Z,,)) =0
With Z,, computed, (2.1} give us Y,, explicitly. We repeat this

procedure in next stages. In the (-2- th stage for the computation

of Z; ., W& hawve the system

i-1 !
g[r"mﬁaﬂf”nﬂf%;]‘ =0
I=1

Thiz system must be solwvad approximatively, and then we
obtain ¥,; explicitly from (2.1).

REMARK ?.4. The continuous half-explicit methods defined by
(2.1} - (2.4) are apsumed to exist and Chey are convergent.

Results in this respect for the discret implicit methods and
half-explicit methods can be found in [3] and [1], respectively.

4. ORDER CONDTTICNS FOR CONTINUOUS METHODS .

We will reguire that the coefficients a,,, i=%,8: j=1.1-1.

C,

i=T. 8 and the weighted polynomials b,(@8, i=1,7 satisfy

conditions to ensure that the local error be of a certain ordsr.
Thege order conditions are obtained with the aid of Taylor
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expansions, in power of h=x,,, -X; ,of exact solution vix,+8h) and

of the approximate solution u(x, +8h).

The coeficients of these expansions are functions defined cn a set
of Toated trees. We will not enter into details, as all the theory
can be found in [2] and [9] . We will only present the order

conditions for the continucus mrthod provided by (2.1) (2.4]) to

have the uniform order p=4.

If we assume that &, ;.,+0, i=3,8+1 with a,_, ;=h;(08) and c,,,=1 then

r-ﬂ."'.I

the matrix

22 d . o
a., &, P e Q O
A = . ; i oa . .
ani an.? 'E.ﬁ I A a.u:...u:-‘l o
L @ee1,1 Harr,n Bger,z 0 0 0 Hgera-1 Qe
iz invertible and we note ite inwvers as
w,, 0 0. . . O
-1 i ] ] TR |
. g1 W53 .
.El = '-mz-|:| = r
m.n':r m.‘l’.z ! L. ml’l

with @,»0, 1=1.5.

We wish to underline the fact that it the contimious method

{2.1) -({2.4) has the uniform order p and 5 stages then it is

necesszary Lthat sz2p-2 if c =0, o;#0, i=%,2,[4]. For p=4 it is
necegsary that £26, that 1is we will take ==&, therefore Che
minimal number of stages for order p=4. The order conditions

[or p=4 are

{3.1) 3 byi8) =8,
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&
Z.-ﬂrfﬂ}ﬂ',=%

ghitﬂuch =

T

3

E b (8)ac,=—

iog "
2 u
Ej] {E] (ﬂrmaicd_|=jﬂ',
Y b0 ©ychwyci, =20,
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-
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1 ,i:b"{m ol o S
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ot}
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-

b, (8] Wij¢:?+1ﬂjkﬂ£= 1@ C1 =200,

L

Ef}- A} -:'4mf:l.c:|+1= i

3 g
4

ik

Y b8 a0 ey i
0 1 1= i3+l 4"

I Tr

b i

a4,

' ]
.b! {H:I mijﬂaj+1miiﬂk+|&k+1‘ jcl -

I

bl {B}I & ;C}U1E£§,[ = e—
itk - - &

e
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L]
=g’
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(3.20) E b, {8) ai_r-r-a_l-ﬁ-::',f‘iamﬁcfr_=%

1,3k, 2
In order to derive a half-explieit continucus Runge - Kutta method
{2.1) - (2.4) we have thersfore to determine a;, ¢,  b;(@) to

gatisfy the system (3.1) - {2.20).
At first site the solution of this algsbraic nonlinear system sSeems

(=

to he a utopia: we will nevertheless notice that it can bea
considerably simplified under certain circumstances.

4 _SIMPLIFICATION OF OEDER CONDITIONS

PROPOSITION 4.1 If B (8) =0 and &;,. Ty i=3,5:3=1,1-1 satisly

rth= relations

(4.1 Y. 2;,0=50), i=3,4.5.6,
2
a=1
then wae alsoc have
1
i =2 s a ——
[q-EJ Wul:.:'ji-ﬂ:El:'i-'-ﬂiqCﬂ; _1=1Iﬁ-

1=l

The procf goes the same as in [1], we will therefore nob go into

further details.

PROPOSITION 4.2 If b (08) =0 and moreover

(4.3] Y a,ci=icl. i=3,4.5.6,
i~ 3
Fhan we alsc have
1
P & E .
._d,-q::l Elmi:f_'-';;-_=3l:'g*h}i. C;; i=1l.&

Proof. The relations (4.3) can he written as
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. 4 o0
Ty
2
L] 3
& E"‘
1
.-.‘1 - E I C-_,--j
a
a 3
Lo
&
1 Ce 113
Ty

Hence by multiplication with A" onm the left, we will gel

2 0 )
L1 7
3 £
L 3
o Cg

ar = 3 ;
Cs
z
Cs
2
lf-.ra; 3
2 1 c-" ?

whers I ig the identity matrix of order &. This relation can ha
written

i
z mj_,u'f-'_?—l:-a {:,;_ar i=2,3,4.5,6
=1

If we add @, to the two members of the above ralaticn we will get

the wery relation (4.4).
PROPOSITION 4.3 If p (@)=0, (4.1) and (4.2) hold, and

morecver b, (@)w,, =0, i=1,6:8€[0,1] then the system (3.1} - (3.20)
ig reduced to the eguatiomns (3.1}, {(3.2), (3.3} (3.7}, that is to

(4.5] b, (8) +h_(8) +b, (8) +h, (8) =8,

(4.6) By (8) ¢ + b, 8) ¢, + 1y (8) &+ b, (@) ¢, = &,
(4.7} by (@) i+ b, (B) cf+b, (8 el +b, (D) i = E'; p
(4.8) b, (8) ¢l +b, (B cf + b, (8) < + b, (B) c;=“T'.

Proof. Let us notice that the equation (3.4) is satisfied on the
hypothesis that {(3.1), (3.2}, (3.3) hold
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4 2 5
}; -y Ya,e=1 Ci_lp.f T W L
-bl{ﬂ:l d{_fcj_ - JT:'f'::H:l - d_:_l:'l'.-_l-—i-l bl':E}T—E ~ -D,".B} C‘_,_E ?_?‘

Here we have made use of the relation (4.1) valid for i=3,4.5.6;
as for i=1 we have ¢, =0 and for /=2 we have b (8} =0
Likewige for the equation (3.5} we have

[
p-{:’i (8] = "-':"_;'_:':f;aq '}: b:{ﬂ.l C—'f; m-;jﬂ_-_.lk-q =;: "b.l' a) ey fgl'f-'_;"'fl}_;l'ﬂ;] =
) ] |

3 &
D IERULEDY @ e, cl=2- L r0=20,

i
In a similar way we can prive that the equations {3.6),
13.8)-(3.20) are satisfied in our hypotheesis.
For example for the eqguation (3.14) we have, on the bagig of
proposition 4.2,
Y bi8) gy 00, =):_, b,(0)c, ; 05,07, =3 b (8) ¢;{3¢] e ,,00) =
I : |

-

s b
i
=1

im]

FEMARE 4 _.1. Givan the fast that Wy, d, =1, wWe hawve= m,l,lfl:j and

by hypothesis b ()@, =0, i=1,6, we get b {8)=0.

5. THE EFFECTIVE DERIVATION OF A FAMILY OF HALF-EXPLICIT
METHODS

COROLLARY 5.1. In order to obtain a continuous half-explicit
method of order 4 with & stages it suffices that we determine the

parameters of the methed a,, <;, 5;(8) 20 as to have the equationa

[4.5] - i4.8) gatisfied and, in additicn,
(&.1) o, =0, b (B) =0, b iB) =0,
§-1
(5._2) 24=0Cy, 1=2,8,
=
i-1 o
[5 _J-] &1111= . # .:.=3.-Er
T=1 N 2
V = & 1 a _-_T-'
Lbl.":‘t:l x&,-.,-:'_f—i '::I.. e ;rﬁ;
.--”] )
{C.5) Gy =Wy, =06, =@, =0

The procf of che corolary results from propositions 4.1, 4.2, 4.3,
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FROPOSITION 5.1. If &,,¢,.¢, are real distinct numbers and

differ from 1 then the polynomials b, {B), i=3,6 which satisfy the

system (4.5) - {(4.8) are given by the relations
[5.6]
-1 5@ 9?

() = —-—— (Ll+c — G, C) =¢, 0,8,
b3 :I |:'r'-\:-'i._“'-\l'_'} {I:-'I;u_l:-'l'_'::l [l_‘:--'p!.:l | 4 j _1_+E.'5}+ 2 ‘f-'d_*f.""' 2 5':' -].r'_'.B
(5.7)

1 (8¢ & az

(@ = — - (1+ey+e,) ~— (o +e+ 0, Cg) —o, 50 |,
b8 fo,—c.) (e~ {i-g) 4 2 ( 3*63) 2 Syt +OC) — 55
(5.8)

-1 -ﬂi ﬂ‘!- Eg

0) = — - (1+g,+q) —— (O, +o,+o,0, ) oy, 8|,
L) e o e ey e gt v T L e e e
(EaL 8
b (8) =

g "8 (o Tl 1=c,0,0.0

= ; — =yt v ) +— (O, 0+, G +C, ) =C .

I:l_cﬂ-} ':-1_":"4.:' 'i-l'“"-";.I 4 3 CaThas 2 R B b T b algten

Proof. Assuming that c,,c,,c; are distincet and differ from 1,

the 1linear system in unknowns b,(8) {4.5) - (4.8) has its
decerminant different from 0 and then the system has a unigue
solution which can be found easily and we will get (5.6} (5.9)..

PROPOSITION 5.2. A family of solutions despending on one
parameter for the system {5.2) - {5.4]) is

= % . = o3
oy =0, &y =0y, ﬂsi‘g"::i aaz_Ecz: C':-"E‘:'n

o (9a, -20:) 2er (i -3)
aEEI. E!I‘ﬂ‘ a5$= £ - = r EE-I-z E g = r
Ar, ic,
(5.10})
8 (7 +/17} _ v
180, 0. =90, 126, + 8 4(18c,c -9¢C, -6, +4)

-H‘ = S z F 5‘4 = é

= 9o, (3o, -20.) 9, {40,-9C,)

Blcli-T2c,0,+246,-9¢, -8

EL__ = i

- A(2c, =3c;) (42, -94)

where ¢, €R% 0,1} represents the parameter.

The conclugion is arrived at as a conseguence of wvery elaborate
computation from the relations {5.2) - (5.5), forming for each and
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every I€{?2,3,4,5,6} a linear system in a;, whose gaolucion lead us
to the wvalues [(6.10).
COROLLARY 5.2. The coefficients ag,c;, i=2,8, j=1.,1-1 given

by (5.10) together with the weighted polynomials b, (8), given by
[(BE.68)-(5.9) where ¢,, ¢, c; have tha waluss in {6.10]} and

b (8) =0, b (8)=0, will provide a family of continuous half-
explicit Runge - Kubtta ECype methods hawing the uniform
nrder ps=4 and s=6 STages.
The procf of the statement 18 immediate taking into consideration
the fact that the system (3.1)-(3.20) can be reduced to the system
15.6) - [6.9) in the hypotheses (5.1)-(5.5).

COROLLARY 5.3. A particular continuous half explicit method of

arder 4 with & stages obtained by the choice 53:“% is given in the

Array
0 |
1 [
5 A
1 | Ll
4 16 1é
3 3
(5.11) 3§ | i s
3T +yI7} o0 _ 947 +,T7)  3{7+/1IT)
16 EYe 32
1 | 0 o 1+3417 19-11417 -2+417
& 18 ]
| 0 0 b {8 b {0) b8} I, (6)
_ =17 +3¢TT |, e 8 g1, 3 (93+/IT) gu 8 (T+/TT) 5]
e llﬁﬂ 3{43+3m_ﬂ+ - S '
b, (8) = 5lel_f [3:9*-.3 ':‘-’-1;;;’!'*“17 ) @24 (122 +25¢T7) 0-6 17 +-.-"_l‘f}H'],
(5. 12) -
_—289+71/I7 [qe_ 13p7, 2352 39
By {0} 51 1ﬂ 3 0 16 g |
' _5-3yT7 | ge_31+3/T7 2, 3039+5¢TT) gu_ 947 +/T7) B]
b, (8) ===t | © s b 64 128
REMARKS 5.1. The continuous half-explicit mathod given by
{5.11) - (5.12) has the properLy that

L5 bl (B =L, 18, i=1,2.3,
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where L,(8) is the 1i-th Lagrange elementary interpolaticn
polynomial  with regpect to the pat of the ncdes

L T
[y, CprCaa Cg} = { %’%’ 37 ]ﬁlﬂ ,1]-. corresponding Lo non-zero

weights, The statesment can be checked easily.
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