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COMPARISON THEOREMS FOR THE SECOND
ORDER NONLINEAR DIFFERENTIAL EQUATIONS

JozeF DEURINA & VINCENT SOLTES

ARSTRACT. Our aim in this paper s Lo establish new comparizon principles of Sturm’s
type. The equation

* (rta 10 + p(t) w gt |" sgnuigli}) =0
is compared with the equation

I::ﬂ[:f]yrl:f}}l + z(th|y (i) |# sgn plw(t)) = 0.

We consider the second order differential equations with deviating argument

(1) (r(th’ (1)) + pledlu(g(t))|* senu(g(t}) = 0,
FLTHl
(2) (') =+ 2(t) w(wit)) | sgny(w(t)) = 0,

where r, 1, p, z. o, w £ C{[tg. o00}) are positive, o = 3 > 0, and git) — oo as ¢ — oo and
wif) — oo as § — oo

In the sequel we shall restrict our attention fo nontrivial sohations of the equations
considered, Such a solution is called oscillatory if the set of its zeros s unbounded,
(rtherwise, it 1s said to be nenoseillatory, An equation is saitl to be oscillatory if all its
salutions are oseillatory.,

We say that cquation (1) is in canonical form If

s _ffs o
'r'{.-.:I Sk
j"m el
< O
rie)

then equation (1) is said to be in noncanonical formm.

It is known that the canonical eguation (1) is oscillatory if fm pls)ds = oo, hence
dealing with equation (1] which is in canomical form we may assume that f’i' pls)ds < oo

On the other hand if
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We make use the following functions in the remainder of this paper:

_ tods . tds _

for canonical case of (1) and (2) and

= da e
P[t:l = [ 1’__ « anﬂ.d -:I'-l:-l!r_l = f '%S-. - i .:_:h r'::'
Jv rls) : e dls)

for noncanonical case of (1) and [2).

Moat of the work in the theory of oscillations is centered around the second order
differential eguations. There = much lterature dealing with this subject, and for &
svatematic treatment the reader is referred to [8).

Since Sturm (1836} introdnee the concept of oscillation when he studicd the problem
of heat transmission, oscillation theory has been an important area of cescarch in the
theory of differential equations. The prototype of results we wish to establish is the
following Sturm’s classical comparizon theorem 9, which deals with the special eases of
equations (1) and (2], nanely with the eqnations

(3] (r{t)u (L)) + pliu(t) =
annd
i) (' () + =(Hwit) = 0.

Theorem A. Assume thaf

iy rlt) <It), &€ [lg,m),
Eﬁ'} _Fl.rﬂ = -3":""]-_ ¥ E |r'|"|j,¢'l: I,

Then eguation (3] is escillatory if equation (4) is oscillatory.

Using Sturm’s comparison theorem, we can obtain the cscillatory property of an second
order differential equation from some other ecquation with known oscillatory behavior.
In faet, many goad oscillation criteria have been obtained from Sturm’s mmpars:}u
theorem. Far example taking the fact that the Euler equation o) + (a/t?y yitl =01is
oscillatory if @ > 1/4 into account, according to Theorem A equation (3) is oscillatory if
tplt) = (1 + €)/4, for some e = 0.

The following analogy of Sturm’s companson theorem for nonlinear differential equa-
tions with deviating argument has been given in |2).

Theorem B. Let (1) and (2} be in canonical form. Assume that {5} holde and the
following conditions are satisfied:

(7] g(t) = w(t), # =i,

(8] w2 nondecrarasing,

(9] f pl;s]dsff #a)ds, t2=1y.
f i
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Then equation (1) i escillatory if equation (2) is oscillatory.

Note that condition (5) imposed on the funetions r and { in Theorems A and B has
the offect that those theorems cannot be nsed if (1) is in noncanonieal form and (2) is in
canonical form.

Another question concerning the oscillation of equations of the form (3) and {4) may
be posed as follows. Suppose that one of the inequalities (5) or (6) 1= violated, but the
other is amply satisfied, It is possible to deduce again that (3) is osrillatory? This
question has been considered by Harris [4].

The main tool in our efforts here will be a transformation of an equation. We reeall
the following two results from [3] and [7]. Note that the function p which belougs o the
class €1[tg, o)), is decreasing and maps the interval [ly, oc) onto the interval (0, n],
where pg = pita). Let p ! be the inverse function to p. Then & composite hanetion
p~1(1/2) belongs to the class C([ag, o0)), where 3y = 1/pg, is increasing on this interval
and maps the interval [3g, o) outo [trh DG':I

Let us denote

1 gy . e s :
(1) misi= plp L1gsy) r (a7t (1fs)) o= (a0 (1/8)]), 22 a0,

]
(11} (B8]
: A elg[p~2(1/s)])

Then we have the following:

= En.

Theorem C. Let (1} be in noncanonical form. Then equation {1} is oscillatory it and
only if the eguation

(12) ¥ (1) + eyl ()] senglgn(t)] = 0, t 2> 1/pite)
iz nacillatory.

Theorem C can be found in (3, Corollary 1]. Morcover, Corollary 1 in [3] provides Lhe
relatiomship between a solution of (1) and a solution of (12]. For more details see 3],
Now we turn to the canonical case of (1), Let ns denote

pelt) =r (R p(RT(H) . =t
galt) = R (g (R7HH)), t=to,
where B is the function which i the inverse of . Then the following theorem which
can be found in [7] holds.
Theorem D). Let (1} be in canonical form. Then equation (1) is oscillatory iff and only
if the egnation
(13) y"(t) + pe(t)|yle2(t)]|” sanylga(t)] = 0.
iz oacillatory,
Now we are prepared to present some new comparison resulis, For simplicity and
further references let us denote for noncanonical case of (2)
1 § . . B
{14} (3] = 52 I:l_ll:ll."ﬂj:l ! |‘..:!'|_l-|_]..,|"$_|:| A3 (e |l Ji_l;',::]]} , 4= &,
1
Mw [A-H1 /8]

[ L3) wils) = A 2 &0,
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and for canonical case of (2] we define

w()=1{L") = (L7(t)), t=t,
we(t) =L (w(L7())), t= .
Then we have:
Theorem 1. Let (1) and {2} be n canonical form. Assume thal (8) is satisfied. Further

assume that for all large o

gait) = wy(t), and
(1) ]il!m i.:l'!.fm{i_:l .I.l'[ﬁj-l'fh = L sup L) (s ds,

k4 F—+ oo 14

for some € = 0, Then equation (1) is oscillatory i equation (2] is escillatory.

Praof. Since (8] holds the function w; is nondecreasing. By Theorem [, equation (1) is
ascillatory if and only if equation (13) is oscillatory and since equation (2) is vscillatory
then equation

(17) §'(8) + z2(8) wlwa(1)]]¥ sgn ylws(1)] = 0,

in oscillatory, Applying Theoremn B to equations {13} and (17} we see that equation [ 13)

i oecillatory if . -
f palslids = f zal5) ds,
1 t

for all large t, gav ¢ > t;. Simple computation shows that the last inequality 1= equivalent
(%]

] L
(18] f plajdas = f z(s)ds, 1=t
R—=10t] L1t

On the other haad, as R(t) — oo if and ouly if { — oo, we have from (16}

(19 liml[]ff"f pla)ds = limsapt® f z{8)ds,
: I

T—rod —1{¢} t—+oe =1}

from which it follows {18}, The proof 15 complete.

Theorem 2. Let (1) and {2) be in noncanonical form, Assume that (8] is satisfied,
Further assume that for all large !

gty = wylt), and

lim inf ﬂf plz)p™ (gl -}pfs] ds =

[ ] _|'_'.I

20 T sup
= ‘I'—E-i:\-:hI ALt]

[ M)A [wis)) z(s) da,
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for some ¢ > (. Then equation (1} is oscillstory if equation (2} is oscillatory.

Proof. It is easy to see that funetion wy is nondecreasing, Aceording to Theorem O
equation {1) is oscillatory if and only if equation (12) is oscillatory. On the other hand
since equation {2) is oscillatory then equation

(21} y"(t) + 21 (t|wlewy (£]17 ngn ylen (£)] = 0

1s oscillatory. Theorem B applied to equations (21) and {12} puarantess the oscillation

of (12 if
[ u] o
f pilslda = f 08 els,
1 !

for all large t. It is easy to verify that the last inequality is equivalent to
b 1

(22) f plalp™ (g2 pls)ds = [ Ma)A® (nw(2)) =(s) ds.
4

—1(1/1) LA
Un the other hand, as p{1/t) » oc i and only if t — a¢, the assnmption (20) is equivalent
to

bl
]iminf?‘.*f pls)p™ (gls))pla)da =
[ ] =L A jl

=
(23) lim supt* [ ALa)AT (wis)) (=) ds.
[—ras X i |'l1_|'
[rom which it follows [22). The proof is complete,

Theorem 3. Let (1) be in canonical form and (2} be in noncanonical form.  Assume
that (8) is satished. Further assume that for all larege t

g;{t} e Tl I._ll_:l and

N I ; 1 ik
Umiat 2(0) - ple) >l s [ AN Gwto) o) ds
for some € > ). Then equation {1) is oscillatory if eqaation (2) is oscillatory.

Theorem 4. Let (1) be in noncanonical form and (2) be in canonical form. Assome
that (8) is satisfied., Further assume that for all large ¢

a1 [J.L:I = -mf._;{'t:l

and
f pls)p™ (gl s) )pls) ds = limsup L5t J[ .z{.l:] da,
t ¢

T

1
Lizry ind
] F'! f't']

for some € > (. Then equation (1) is oscillatory if equation (2) is oscillatory,

Theoremn 3 and Theoremn 4 can be proved similarly a3 Theorem 1 and 2 and so the
proofs of those theorems can be omitted.

Theorem 4 permit us fo deduce oscillation of noncanonical equation from that of
canomical equation. This 15 a new fact, which nor Sturm’s comparison theorem nor
other kuown comparison theorems provide, Moreover Theorems 1-4 enable us to deduee
oscillation of (1] from a given oscllatory equation, If we return to the problem from the
wotivation part of this paper we see that if one of the inequalities (5) or (6) ((5) or (90 )is
violated but the other is amply satisfied, then by Theorems 1-4 we can again deduee
oacillation of (3} from (4] (of (1) from {2)}. Our results here extend those of Harris [4),
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Example 1. Let us comsider the Euler equALIon

1 Ry
'II S R N Acn . " .
[24) (t_.-, .Lf,) £$x[ij =, ‘+21, axI
It is easy to verify, that (24) is oscillatory if @ > 1. Put € = 1 in (16}, then by Theorem 1
applicd to (3) and {24) we obtaiu that eanonical equation {3) is oscillatory if

L)
i PR P M 1‘
]1{2}&1 R[i;j: &) da = i

which is a generalization of a result of Chanturia [1]. Moreover Theorem | provides
ELII.LIt]lE:P Mﬂldiiml rritl:'riﬂrl 'Fﬂr EE:I. iﬂ f..j_l_l_. ‘I:ilj{]]’lF:' Elﬂ:l j_ul:.;’_p ACCODITIE We Spe r_J:hlrl {3:' |ﬂ
oscillatory if
b

liminf R'[ijf plajds =0,

T—on :
for seme ¢ £ (0, 1]. Now we turn to nencanonical case of {3]. By Theorem 2 noncanonicgl
equation (3] is oscillatory if

gt L i -
hﬂ?ﬁfﬂ{if o2 (s)pls)ds = 0,

= 1
f @ )pla’ ds = il litn inf
t

to pt(L) Sy

for some ¢ £ {0,1).

As the following illustrative exanple shows Theorems 1-4 can be used to Gnd a snffi-
cient condition under which equation {1} is not oseillatory, i.e. (1] has a nonoscillalory
solution.

Example 2. Consider the nonlinear differential equation
(25) (Y)Y +89% 0 =0, tz1

Equation {23) is not oscillatory since it has a nonoseillatory solution y{t) = +71. Consider
another nonlinear differential equalion

(26) Ifflit:luJI:t]:If bzt (w(t)) = 0,

where [, = and w are the same a5 in (2] and further w{#) < ¢ is nondecreasing. Then by
Theorem 4 with € = 2 canonical equation (26) has a nonoseillatory solution if

limsupLg{ijf z(s) da < 1
; 16

f—b

and by Theorem 2 noncanonical equation (26) has a nonoscillatory solution if

: 1 9 : k
Limsup .-"n.ilr't'l_f Miahz(s)ds < T
ved

T—ron
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