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Abstract

Proofs have been given that non-commutat e geomeLry and
differential calculus ecan be joined together by inveking an
underlying quantum-group symetry. Choosing the gquantum group
50 (N}, we then have to proceed by using the corresponding R-matrix
solution to the parameter dependent Yang-Baxter equation. This
results in a non-trivial g-deformation of the Laplacian acting on
the N-dimensional non-comutative gquantum PRuclidian-space RY.
Surprisingly enough, the radial reduction of the covariant
derivative implied in this manner reproduces the g-difference
derivative presented long ago by Jackson. This opens the way to
derive nontrivial g-deformations of the eigenvalues of the
second-order Casimirs of 80, (N). The representation-dependence of
g-deformed eigenvalues reffered to above is also discussed in some
more detail. The free particle can then be treated in terms of g-
Jackson-Begsel functiong.

1. Introduction
Parameter-dependent generalisations of the usual gquantum-mechanical
description have attracted much interest during the last decade
[1] . The deformation parameter is denoted by g, such that the usual
theory gets recovered as g-»1. This notation is reminiscent teo the
g-difference formula

9, ey wpEF gy < LAe00) “Xix) i)
LE(x) =0 £ix) e 1.1}
written down long agoc by Jackson [2]. Several g-hypergecmetric

functions have been discussed even much earlier (sees §1.1 in [3] ).
However, the most important step characterising this decade ig the
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synthesis between non-commutative geometry and the differential
calculus, as presented in a clear manner by Wess and Fumino [4] .
Such derivatives should then proceed covariantly with respect to
certain quantum-group structures [5], like the one of the

N-dimensional linear matrices GL,{N), or the ons, say 50, (N),
describing the rotations about the origin of the N-dimensional
Euclidean space. These guantum-group symmetries are incorporated

inte £ -matrices having the size N%x=N®  and satisfying the

parameter Independent Yang-Baxter equation £,&,.,B_=F.F.f., [&].
The conventional notation for matrices acting on tensor products of
vectorial spaces is used. Then the quantum-group symmetry is

exhibited by a further Yang-Baxter equation like 1,1, ,=R . T.T,

[4,6], where the Ilinear transformations of underlying non-

commutative coordinates proceed as x?=T7x? . The summaticn over

repeated covariant and contravariant indices ig assumed, as usual .,
It should be mentioned that that the g-parameter is responsible for
the non-commutative bhehavior of coordinates, such as given by the
typical equations

XlxF=gxixt

Xixd=gntxh
1= 3

xlyx?-xixl= xix?
v

characterising 80,(3), such that hereafter g=0. Using the g-
dependent metric tensor C,,, then giwves the square length as [7]

1--‘":= 2 .=
¥ Q.—.?' —C’i_l:;-f-'
(1.3}
=7 '--"Ex'-xhx”xhql”xEx‘
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for N=3, where xg=Cux1 and [ri,x]1=0 . Starting from the basic

covrariant derivative formula [4]

E’!,xk=ﬂ|¥+qﬁﬂ“r"ﬂm (1.4}

opens the way to define the g-deformed Laplacian as [7-10]

A =33, (1.5)

where 8'=c3; and 8,7d/dx!, s=so that [A_,d'1=0 . Moreover,

introducing algebraically the radial coordinate by wvirtue of the

commitation relation [rq,xi]=n . nothing prevents us from defining

the radial derivative by wvirtue of the relationship [11]

=y
a,= FE? (1.6)

which proceeds in a close analogy with the classical description.

Proofs have also been given that the harmonic oscillator [7-9]
and the Coulomb-problem [10-12] can be solved on the N-dimengional
non-commitative Buclidean space referred to above, In addicion, g-
deformed radial Schridinger-equations have been written down, as
shown by (34)-{36) in [11]. These equations rely on {(2.33) in [8],
but further explanations and/or clarifications are still in order.
This conjecture motivates us to present further details and
relationships concerning the g-deformation of the radial
Schrddinger-equation. In this context both Hermitian and non-
Hermitian g-deformed Schrdédinger-Hamiltonians will he discusased,
The g-deformed free particle will alsoc be kEreaked in somes more
detail. Unitcs for which %h=m,=¢=1 are uped, whereas the g-number
reads

((nl),=g * (n] =92 (1,7
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The paper is organised a=z follows. The Hermitian radial
momentum operator is introduced in section 2 with the help of the
radial g-deformed Heisenberg-algebra. Section 3 deals with an
alternative derivation of Hermitian but parametcer - and system
dependent Hamiltonians. The free particle is then discussed in
gections 5 an &€ 1n terms of g-Jackson-Bessel and g-exponenktial
functiong, regpectively. Section € contains wuseful details
concerning the angular part of the wavefunctions and the g-deformed
Casimir-eigenvalues. We conclude with a brief summary of main
results and with a suceinct presentation of open pearspectives,

2. The g-deformed radial momentum operator

Using the concrete forms of C- and £ -matrices [&,7], it can be

verified that the & -derivative proceeds as [11]

= [z}
a_aU_EJtTaq (2.1}

in acrord with (1.1) and (1.6}, where p=1+g*¥ . This means that EIL"'r =d_/d_r

stands properly for the q-deformation of the usual radial

derivative d=d/dr . For convenience we shall define, however, the

g-deformed radial momentum-operator as

F=-id (353
oo that
,E!if—qff.i=—iE|:—1 ’ [2.3]

Performing the Hermitian-conjugation of (2.3) and using

HF"=E|4":—1FIHIJ.‘,E‘"'1—Q“E'"E (2.4)

vields
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fﬁ*—qﬁ*%iaﬁ—l {2.5)

where we have assumed gquite reasonably that §F°=F . Then the
Hermitian conjugated radial momentum-operator is given by
fr=idt=-ia¥d

& (2.6

where now @'=1/g . This enables us to introduce the Hermitian gq-

deformed radial momentum-operator as follows

p._.=—;'f (B+57) 12.7)

which is invariant under g-1/g. Accordingly

=1 ElgE)-£igTiE] {2.8)
F el i

B flF) =

which corresponds e.g. to eg.{2.4b) in [13] and which provides a
gymmetrized wvergion of the g-deformed radial derivatiwve. Other
symmetrizations have been done for the components of the vectorial
momentum-operator [12,14], but this time one proceeds in
conjunetion with suitable star-conjugations.

We are now able to realise that the g-deformations of the
three typical radial Schrédinger-equations written down before [11]
exhibit inter-related Hamiltoniang which are not Hermitlan ones.
Thug the g-deformed Hamilteonian characterising the former u-
repragentation | see (38} in [11]) reads

l'fﬂ':'
HE =plg) #+ 22w v(1) (2.9)

]
4

whara

Flg) =-—S— (g W2+q™%? (2.10)
(g+1})



228

and
£ el
r Wi SO L SR Ry PR 21+N-3 . (311
e 11, Kl 4 | j
One has Lel+{N-2)/2, whereas 1=0,1,2,..., as usual. Further one
cbhtains
Ho¥ % " =p(g) (313 -g-27all"?) (2.12)

by wvirtue of (2.6). Applving this difference to a monomial yields

(1 -5 e 26, (@) =

(2.13}

=B {011, [[n-1]] f1-gmras
fq*l}a o f_lf 2

so that G,{1)=0, as one might expect. This means that the classical
limit of (2.9}, 1.e.

0= _g@afra-1) 1
Hy'=—df4L 4.:|r?e+1r'¢r} {2.14)

ig Hermitian. However, if g#l, one has G (gi=0 if n=0,1/2 an 1

only. This indicates that H,” <ceases to be Hermitian, inm

contradistinction to &Y

Such g-deformed Hamiltonians are, however, meaningful as they
play the role of well defined g-parameter dependent generalisations
of Hermitian classical counterparts [7,8,10] . Moreover, it has been
found that they work safely in concrete applications, like the qg-
deformation of classical duality transformatioms [15]. Tt should
also be stressed that such developments serve as a theorstical
basis to the derivation of more general g-difference and/or
discrete eguations. In thig respect we have to menticon, that
guantum mechanics on a lattice can be viewed as a nontrivial g-
deformation [16], too. Moreover, there are reagonsg to congider that
the flexibility of the usual quantum-mechanical description gets
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enhanced oy accounting for appropriate non-Hermitian
generalisations [17].

3. The g-deformed free particle description
Afcer having been arrived at this stage, we are ready to analyse in
some more details the g-deformed free particle description. Usual
results have then to be reproduced as g»1. For thig purposa, let us
congider the g-deformed radial Schrédinger-eguation [8,11,18]

HET LI (7Y = (AL 4V () ) £57 (BY =B £ L 2) (3.1)
whera now

g

(4.0 _ _21W ig? B 2 T+p-1 —13 3.2
‘i (e +q_1 [r + ]]Jf [ -I

which relies on (2.9) and which works in the f-repregentation
discussed before [11]. Putting V{r)=0, we are then faced with the
g-deformed eigenvalue equation

-V el P TS Al 5 (3.3}
The eigenvalue and the eigenfunctionsg are then given by

- |

S~ hk? (3.4)

where k denotes the continucus and positive momentum parameter and
EURp k) =2 L T (ki o) (3.5}

respectively [18]. One has

i1} N = l:—l:lr'l:..‘-f_.-":&:'znﬂ_'__ﬁ 3 E-
J-p ':.--:‘l'.l'!?.:l E:_u [[H]]Q!I‘qtn+1+“] {3.6)

whaere 0O=g<l, which relies on the well known g-Jackson-Bessel
functions [19-24]. We have to note, however, that (3.6) corresponds

to JYM{(1-g)x;qg) , as used in the mathematical literature [24].

In addition, the g-Gamma-function guoted above fulfils the typical
property ( Bea a.g. [26])
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T {(o+is+v)=[[n+v]] T (n+v) . (3.7}

We then have to recognize that egs. (3.3)-(3.6) express a meaningful
g-deformation of the usual free particle description. Accordingly,
the usual results get reproduced safely asg goon as g-1.

Further clarificationg are still in order. Indesad, accounting
for (1.1}, we have to realise that the inverse operation is given
quite consistently by the g-integral [26]

[(rinar-(1-a) Y7 a’fig? (3.8)

where 0Ozg<l. Relatedly, let us consider the g-deformed sine-
function

; {-l}”}i_'z'j.‘l .n.'I."I ]I q+1 At :
gin_xs= — 1.5
Lo [[2n+111 !t Tai{1/2)\ 2 a2
We then have to realise that
[sing(k'F) min, (kF) d;=%aqtk’—m (3.10)
[n]

stands for a nontrivial g-deformation of the usual Dirac-function

L

S E
Eﬁl..i’f: k) . (3.11)

Jr"sinck-“:} ain(kr) dr=
a
on the other hand there is [ see also (3.17) in [25])
- f
sin(x) ={%:-£JI| g (e g®) (312}

20 that the scalar product (3.10) becomes
(k'k) /2 k', 1/2]k, 1/ 2} =8 _(k'-k) (3.13)
where |k,1/2}, stands for {;”EE{f,k} . Therefore, fglﬂﬁ{?,ka

exhibits definitely a well defined g-deformed version of the
orthogonality condition characterising the olassical solution
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ff”i:irrk] . Thus there are valuable reasone to consider that the

gpectrum characterising the g-deformed free particle presented
above is definitely continuous, which agrees with the very form of
the g-energy exhibited kv (3.4). Such results are in accord with
the eigenvalue-equations done recently in terms of a star
symmetrized free-particle Hamiltonian { see (15)-(16) in [12]). The
game remains valid with the free particle description [27] based on
homogeneous spaces [28] of the Buclidean quantum group E_(2).
Nevertheless, a discrete free-particle spectrum has been
derived by looking from the very beginning for normalizable power-
geries expansions without negative powesrs in the radial coordinate
[29] . The point is that the discrete energy derived in this manner

behaves like 1/(1-g** , so that it does not express, as a matter

of fact, an actual g-deformation of the classical result. Such
results should then be viewed as exclusive manifestations implied
by the guantum-group description, so that they deserve further
attention.

4, The g-deformed centrifugal barriers
Now we would like to use this opportunity to clarify several
aspects caoncerning the g-deformed centrifugal barriers as well as
the angular-dependence of total wavefuncticns. First we have to
recall that the radial unrenormalized wavefunctions characteriging

[34)-0(3&) 1n [1l1l] are inter-related as
VSR =R (2 =R e T (2 (4.1)
wheres
P 4.2)
g _TE:T_ 4

and where #;”if} and y[”{f? stand for the former g{r) and £{r),

T

respectively. Starting from f}”if} , we 2an then say that the
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total q-deformed wavefunction factorizes as

Pilgm =gt (x Y £ (B (4.3)

where 5" {x{) is a suitably symmetrized sum of monomials of the

I

same degrees in the non-commutative x'-coordinates ( see (2.23) in
[B]}. On the other hand (4.3} can be rewritten equivalently as

11] 11}

P (®) =rdP (B () (4.4)
wharea izxi/F¥ and where
i I i i

rj.”{EJ]=FSj”ix-J (4.5

ig the g-deformed counterpart of N-dimensional spherical harmonics,
i.e. of Gegenbauer-polyncomials. Furthermore one has

&ﬂ.{:.:.]s.'? ':,.Ffi_:'f:!-” tf}}=5;l] [J‘_ 'i:l hc:’l..ﬁ"l !-r-:ll ﬂf:l -

i4.6)
L i) iy [ o2 ifdl et ;=
=57 x ) |a 'a;{—;—lrrzi] I3 Coyx ) £57 ()
which leads to the g-deformed eigenvalue-eguation
-A v, D) =AT v (B (4.7)
via FiU(#)=f"! . We have to remark that
[
g =—B_—g-i 1] 1+N-2 (4.8)
e e s 115

reproduces precisely the amplitude of the g-deformed centrifugal
barrier in {(3%) in [11], as one might expect. Of <¢ourge, {4.8)
stands for the g-deformed eigenvalue of the sgquare angqular momentum

in che ¥ -representation. Concrete form of such g-deformed
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spherical harmonics have already been written down for 1=0,1 an 2
[10,12]. Moreover, certain g-generalipations of Gegeanbauer
polynomials have also been discussed [3¢]. It should be mentioned
that in order to treat {4.6) we have to resort basically to (1.4},
but further equations like

Fxi=cllsgqiR My xmd (4.9)

and

3. mCy+q(B ) 5ix, 0, (4.10)

are useful.

Proceeding similarly and putting f;”[f]=f’ yields the qg-

deformed eigenvalue (2.11). It should also be mentioned that (2.11)
and (4.8} correspond to the g-deformed Casimir-elgenvalues
presented before for W=3 [12,31] and for arbitrary N [29],
respectively. Thus we succeeded to clarify the representation
background of the two different g-deformed Casimir-eigenvalues
diacussed separately before.

5. Conclusions

In this paper we have discussed further aspects concerning the qg-
deformation of the radial Schrodinger-equation. So the Hermitian
radial momentum operator (2.6) has been derived in a quite
trangparent manner with the help of the radial g-deformed
Heisenberg-algebra (2.3} . Closed free-particle solutions to the g-
deformed radial Schrédinger-eguation [(3.1) have been written down.
We have also succeeded in clarifying several details concerning the
anqular part of the g-deformed wavefunctioms as well as the
influence of the representation on the g-deformed Casimir-
eigenvalues. In general, g-deformed radial Schrodinger-equations
mentioned above are not easily solwvable, but useful approximations
can bhe derived by applying g-deformed 1/N-formulae [11,15,32].
Besides (2.3), other generalisaticons of the Heisenberg-algebra hawve
also been digcussed [31].
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