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Abstract

This paper deals with the conditions under which all cecillatory solutions of the n—th
arder nonlinear differential equation with quasiderivatives and devialing argurnent. of &
foarm

[t (B - -ralf) (0 (E) - ) + a{t) Flulg(t))) = bit)

tend to zero far & = oo
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1. Introduction

In this paper we shall invealigate the behaviar of the oacillatory solutions of the r—th order
nonlinear differential equation with quasiderivatives and deviating argument of a form

Loyit) +all) fulg(t))) = bit] (1)
an some unbounded (tp, 0c) , where the so called quasiderivatives arc defined Ly the following
relalions

Lay(t) = yit), Lqy(t) = ri(t) [ Lioayit)] for i=1,2,...,n— L, (2]
Iﬂ-r.?':'[f'.:‘ = I_J':n—uf{I]J'-

We shall consider only so called regular solutions of this equation, l.e. solutions which
ape delined on =ome neighhourhood of infinity and which are nat eventnally wrivial. Suach a
solulion is said ta be oscillatory if it has arbitrarily large zeroes, otherwise it is said 1o be
nonoscillatory.

The aim of this paper is to give some sifficient. conditions wnder which each oscillatory
solution of the equation (1) tends o zerc for &t = oo

Let {HIp T} be a set of all funclions ¥ such that Lgy(t) iz defined oo {T,oc) for
i=0,1,...,n. Then the domain af the differential operator L, is & set

D(La) = | D(LnT).

T3ty

Through the whole paper we chall assume the following conditions Lo be fulfilled.
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(&) m > 2 is Integer,

I:.]J":l FlaT e ot TR=1s i, IlEI1 a = ‘:'il::tl:l: '-"T":'}I -f = {-'TI:_m1 —.Eﬂ':l L]
(€] ity >0 for t2fy, i=1,2,...,1—1,

oy =|.'.T2: glt) =oc

(€] fly) is nondecreasing and yf(y) > 0 for y #F0.

H KX

Lat us define the following lunctions and operalors.

{a) Roff) =1,

{b] H—i{f-]—fﬂ T-;-lr;d if ..[ 1_1{ JI&E"Jmn L
T (4]

ooy 1[3] [.H;_]
T W) = | — il A _
fs) 2ol f u:ﬂ (5] T

to

for =ty and i=1.2...., n—-1.Let y& D{L,,T) lwr some T =y, then we shall define

Uiy, Tty = f RV Liw(s)]'ds for 1 =T, i=0.1,...,% -1. [5)
T

2 . Auxiliary assertions
Lemsa 1. Let y(t) € DLy, T} for some T = ty, then

aj if ln-n [t (y, T.t) exists [proper or improper),
ﬁarn llm y(t} exisis -"pmprr or improper), too,
b if | JJm L'T._ (p, T, 1) =
L T e
then | lim y(i]| = 2o, too.
e

Proor. The proof can be found in 2],

Lewwa 2. Let

j!n ). o fori= 1,200 1 (6}
rilt)
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Tet y € DLy, 1) for some T = to, 5T and K > 0. Then
aj if Uya(y, I\ 1) = K for TLIL<5,

LI |
there yit) fJ'f+E (T LiylT)| for T <t < 8,
.E-}t_,Fi!',1[r,rT.!]l'=' Fffuff"!-:‘.ﬁ

r—1

then y(t) > —K — 3 |R(T)Lay(T)| for ' St = 5.
i=0

Proor. We shall prove the first part of the lemma. Lhe proof of the second oue is analogous.
Let i & {1,2,...,n — 1}, then by (3} we have

' ¢
Uiy, T.t) = f Ri(s)[Liw{=)]'ds = R Layit) — _[[H;[R}]‘L,-y[sj:ia — BT Lap(T)
T T
and bw (63, (2), (4)(b) and (3} we have

BT = ROl + [ B Bt ) 2w~ RTIL(T) =
J

£
= Rilt)+ 1l-Lf Es_l(t}[ﬁ;_.y(t}]‘+ch—1[R}li.-_mtsﬂ’d#- BT LT =
T
_ LB e T+ Uiy, Tot) — Re(T) Ley(T) for ¢ 2 T
~[RaT -
Hence, the function w(t) = [5_1(y, T.1] is the zolution of the 1% prder linear differential
equalion !
¢ I8
u'{t] - LSO u(t} +[ Ul [, T.8) + B(T) Ly (T)] = 0

(1) R;{f)
an < T, oc] satisfiing the condition w{T)] = 0. Directly solving this equation we obiain the
following recurent relation

Ly (g, T, 1) = K [t}f H{F'l]]]g [Ty, T, 8} 4 KT L1 ]ds (7)

fort>Tandi=n—-1n—2...2;1
Let Ty, Ty ) < Kilor T 2L = ba.nds-:umpi'{' = 0, then by (7] we have

[Rsta))

Uioa (1 Tot) < (K4 LB T) ey ()] Re(t) f TR:(5)
T R

1 1
= [R; ATV Lay{ T 1y — ———| L K; JAT LY
(K + IRTLATHIRD [ = o) < 6+ B D)
for T <t < &. Using this inequality fori=n— Lin—2,..., 2,1 with K,y = K we gl
=1
Uoly. Tt} < K 4 % BT Lay(T)| for T £ < 5.
i=1
Finally, by (5) for i = 0 we have
Uy, Tot) = wit) — wi(T) = ylt) - (T} = w(t) - | Ra(1'} Low(T|

and this inequality completes the praof of the lemma.
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3. Main results

Now we can prove some results which will be the gencralization of the analogous ones given
by Kusano and Onose in [1] and by Soltes in [3] forn = 2.

THEDREM 1. L&t

f.ri,,_{rz[t}h.!'.t < 00, (8]
4

(e u)

ff-f.u_lﬂ.-{f_l’d? < DG, (%
T

Thern every bounded oscillatory solution of the equation (1) fends Lo zero for L - 20,

Proor. Let y be any bounded vecillatory solution of (1] on some < 1%, 20} C iy, o).
Then multiplying the squation {1) by the funclion Fe-y () and integrating it from T Lot = T
and using the denotations (2) and (5) we gel

] i
UorleT,8) = — [ Ruca(a(a) ala(dn + [ Rusislbhsds for £2 7.

Then by (&) and {9) there exists lim Ly (3,7, ¢} for ¢ — 20, boeause y is bounded. By Lemma
| there exista lim y{t) (proper or improper] for & — o9, Lo, Thiz limit muat. be squal to zaro,
since y Is oscillatory.

TuEoREM 2. Let the conditions (6], (8) and (9] be fulfilled and

gty <t forl = In, (L0
lim sup Iy) < o6 (1L
|:||I|—'|-Il.l

Then every solution of the equatiorn (1) iz bounded.

ProoF. Let y be any solution of (1) on some < Ty.20) € (tg.o0) Let us suppose, for
contrary, Lthat ¥ is not bounded from above (the case of unboundness from helove is analogous).
By (11} there existe K > 0 such that

f—"-::' < K for z > 1. (12)
By (8) ther exists T = Ty such that
i 1
[ #ealattyde < g (13)
T

By (9} there exists M > | such that

a1

[ Bacslbislac X R0 T < 3 (14}
T =
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Sipee the solution i is unbounded from above, Lhere exdals 5 » 1" auch that
#(§) = M and |yigi))| < p(Sifor T =t < 5 {15]
Multiplying the equation (1) by K. 1 (1), integrating il [rom T to t = T and using the deno-

tations (5) we gel

H I
Uaa(pnTit) = —f Ro_qis)ale) fiylgls)))ds + }I(R.-:—l (#]b(a}ds <
r j

4 4
< fHn_l[sjla[s]f[_?.rllg[s]:l]gﬁf.q+j Ry (51|b{s)|ds [or £ =T,
e T
Ry (15} and (13) from this incquality we have

i T
Ut (1 To ) < f(3(5)) f B _aiz)|as)ds + [ Ry [#)[b(s}]ds =
¥ T
= i
< flwl5)) f I [#)|afs)ids + J|f Ra-yls)|b{s]lda <
T I

1 M=l
= f(yi-??]}ﬁ + f Ro_y[=)|b{s)|ds for T <t < §.
T
Applying Lemma 2 to this inequality and using (14] and {15] we obtain

=1
(0 < F1)) 5 f R () b(s)lds + 3 [RATIL(T)] <
=l

M
= Flul "'-‘J]I—+ e flyf:‘i]?“{ yf] for T <t < 5.

Finally, putting t = § in this inequality and using [12) we oblain

5 [
J“U'iii,f[ﬂl—+&,,_] Esrt’é}-

This contradiction completes the prool o the theorem,

TueorEM 3. Let the aseumpiions of the Theoren: 2 be Julfilled. Then cvery oscillatory
solution of the cquation (1) tends to zero for ¢ -3 20,

Proop. This theorem is direct consequence of the previous ones.
REMaRK. For » = 2 the assumptions ol the Theorem 3 have a form

f s < 0o, fﬂ.,[tﬂuf_.',:ll:il‘ < oo and j Hylt)|Bie)|dt < oe,
r1[t] i:-. h{

{1]

which are weaker then those ones due to Kusano and Onose ia 1]

-;I’a L[f] flﬂ“':lldi < o and f”’”] dt < o,
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For instance, the equation
2. P— | 1., i : :
[ty () + I!IU,'I =% sinlnt — Ei':'-’-'ﬁ-]ﬂ t+=inlnt)

hase the oscillatory solulien

}
y(t) = EEmlu.',.

This equation fulfillz the agsnmptions of the Theorem 3, but does not fulfill the conditiens
given in [1].
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