SOME PROPERTIES OF m - FAMILIES

Mircea BALAJ

1 Introduction

Let m be a positive integer. The notion which give the title of our paper was introduced by Klee [7] and it one defined as follows:

A family A of m + 1 convex subsets of a vector space E will be called an m - family in E if $\cap A = \emptyset$, but each m members of A have a common point.

From Helly's theorem [6], it immediately follows that, if E is finitedimensional then in E there is no m - family for $m > \dim E$. The aim of this work is to point out some properties of the m - families. The main result in [2] will receive a new proof (Theorem 6).

If m is a positive integer by $\langle m \rangle$ we denote the set $\{1, 2, ..., m\}$. For an m - family $\{A_1, A_2, ..., A_{m+1}\}$ we shall introduce the following notations:

$$\begin{split} A_i' &= \cap \left\{ A_j : j \in \langle m+1 \rangle \setminus \{i\} \right\} \text{ for each } i \in \langle m+1 \rangle \,; \\ C &= \operatorname{conv}(\cup \left\{ A_i' : i \in \langle m+1 \rangle \right\}) \text{ and } B_i = A_i \cap C \text{ for each } i \in \langle m+1 \rangle. \end{split}$$

2 Basic results

A family A of sets in vector space E is said to be in general position [3] if any m - flat, $m < \min$ (card A, dim E) intersects at most m+1 members of A.

THEOREM 1. If $\{A_1, A_2, ..., A_{m+1}\}$ is an m - family in a vector space E, then the family $\{A'_1, A'_2, ..., A'_{m+1}\}$ is in general position.

Proof. According to the remark made in the introductive section, $m + 1 \le \dim E$. By way of contradiction suppose that there exists an (m-1)-flat L which intersects each set A'_i . Then, denoting by $A^*_i = A_i \cap L$, for each $i \in (m+1)$, we have

$$\cap \{A_j^* : j \in \langle m+1 \rangle \setminus \{i\}\} = \cap \{A_j \cap L : j \in \langle m+1 \rangle \setminus \{i\}\} =$$

$$= (\cap \{A_j : j \in \langle m+1 \rangle \setminus \{i\}\}) \cap L = A_i' \cap L \neq \emptyset.$$

Therefore $\{A_1^*, A_2^*, ..., A_{m+1}^*\}$ is a family of convex sets in an (m-1) - flat having the property that each m sets have a common point. By Helly's theorem is follows that

$$\cap \{A_i^* : i \in \langle m+1 \rangle\} \neq \emptyset$$

and by $A_i^* \subset A_i$ one deduces $\cap \{A_i : i \in (m+1)\} \neq \emptyset$, relation which violates the hypothesis.

THEOREM 2. If $\{A_1, A_2, ..., A_{m+1}\}$ is an m - family in a vector space E, then the following statements holds:

- (a) $\cap \{B_j : j \in \langle m+1 \rangle \setminus \{i\}\} = A'_i \text{ for each } i \in \langle m+1 \rangle;$
- (b) ∩ $\{B_i : i \in (m + 1)\} = \emptyset;$
- (c) conv(A'_i ∩ B_i) = C for each i ∈ ⟨m + 1⟩.

Proof. (a) For every $i \in (m + 1)$ the inclusion $A'_i \subset C$ implies

$$A_i' = A_i' \cap C = \cap \{A_j : j \in \langle m+1 \rangle \setminus \{i\}\} \cap C =$$

$$= \cap \left\{ A_j \cap C : j \in \langle m+1 \rangle \setminus \{i\} \right\} = \cap \left\{ B_j : j \in \langle m+1 \rangle \setminus \{i\} \right\}.$$

The assertion (b) one obtains immediately by the inclusion $B_i \subset A_i$ ($i \in (m+1)$) and by $\cap \{A_i : i \in (m+1)\} = \emptyset$.

(c) Let $x \in C$. The sets A'_i , $i \in \langle m+1 \rangle$, being convex x admits the representation (see [9, p.165]) $x = \sum_{i=1}^{m+1} \alpha_i x_i$, where $x_i \in A'_i$, $\alpha_i \ge 0$ ($i \in \langle m+1 \rangle$) and $\sum_{i=1}^{m+1} \alpha_i = 1$. If $\alpha_1 = 1$, then $x = x_1 \in A'_1 \subset \text{conv}(A'_1 \cup B_1)$. In contrary case, we can write

$$x = \alpha_1 x_1 + (1 - \alpha_1) \left(\frac{\alpha_2}{1 - \alpha_1} x_2 + \ldots + \frac{\alpha_{m+1}}{1 - \alpha_1} x_{m+1} \right).$$

By (a) we obtain $x_i \in A'_i \subset B_1$ for each $i \neq 1$, and since the set B_1 is convex we have

$$\frac{\alpha_2}{1-\alpha_1}x_2+\ldots+\frac{\alpha_{m+1}}{1-\alpha_1}x_{m+1}\in B_1.$$

Therefore in both cases we have $x \in \text{conv}(A'_1 \cup B_1)$, hence $C \subset \text{conv}(A'_1 \cup B_1)$. The reverse inclusion being obvious we obtain $C = \text{conv}(A'_1 \cup C_1)$. Analogously one establishes that (c) holds for each $i \in (m+1)$.

Remark 1. By the previous theorem it follows that if $\{A_1, A_2, ..., A_{m+1}\}$ is an m - family then $\{B_1, B_2, ..., B_{m+1}\}$ is an m - family to.

The proof of Theorem 4 is effected by means of the following known result.

(see [1], [4]).

LEMMA 3. Let C be a nonempty convex set in a topological vector space and $A = \{A_1, A_2, ..., A_n\}$ a family of convex subsets of C such that:

- (i) ∪A = C;
- (ii) each n − 1 members of A have a common point.
 If all members of A are closed in C, or all are open in C, then ∩A ≠ ∅.

THEOREM 4. Let $\{A_1, A_2, ..., A_{m+1}\}$ be an m - family in a topological vector space. If the sets $A_1, A_2, ..., A_{m+1}$ are all closed, or all open, then $\cup \{B_i : i \in (m+1)\}$ is strict included in C.

Proof. By way of contradiction suppose that $\cup \{B_i : i \in \langle m+1 \rangle\} = C$. This supposition together with the statement (a) in Theorem 2 permit us to apply Lemma 3 to the family $\{B_1, B_2, ..., B_{m+1}\}$. Thus one obtains $\cap \{B_i : i \in \langle m+1 \rangle\} \neq \emptyset$. But this contradicts (b) in Theorem 2 and the proof is complete.

THEOREM 5. Let $\{A_1, A_2, ..., A_{m+1}\}$ be an m - family $(m \ge 2)$ of which members are:

(a) open convex subsets of a topological vector space
 or

- (b) closed convex subsets of a locally convex space.
 If x ∈ C \ (∪ {B_i : i ∈ ⟨m + 1⟩}), then for each i ∈ ⟨m + 1⟩ there exists a closed hyperplane H_i such that:
 - (i) x_i ∈ H_i;
 - (ii) H_i ∩ A_i = ∅;
 - (iii) $H_i \cap A_j \neq \emptyset$ for every $j \in (m+1) \setminus \{i\}$.

Proof. Let $i \in \langle m+1 \rangle$ arbitrarily fixed. Observe that $x \notin A_i$ since in contrary case it would follow $x \in A_i \cap C = B_i$, what would contradict the choice of x.

We shall prove the existence of the hyperplane H_i which satisfies (i) and (ii), separately for each of the cases (a) and (b).

- (a) Since the affine set {x} is disjoint from the open convex set Λ_i, by Mazur's theorem (see [8, p.167]) there exists a closed hyperplane H_i that contains x and is disjoint from A_i.
- (b) According to a classical separation theorem (see [8, p.171]), the disjoint convex sets {x} and A_i, being one compact and the other closed, are strictly separated by a closed hyperplane H. Denoting by H_i the translate of H which contains x, it is clear that A_i and H_i have not common points.

Once determined the hyperplane H_i let us to show that it satisfies (iii). Let S_1 be the open halfspaces bordered by H_i , which contains the set A_i and let S_2 be the opposed open halfspace. From the construction of the sets A'_j it follows that for $j \neq i$ $A'_j \subset A_i$, hence $A'_j \subset S_1$. Remark now that the set A'_i can not be included in S_1 . Indeed, supposing $A'_i \subset S_1$ it would follow

$$C \subset \operatorname{conv}\left(\cup\left\{A'_j: j \in \langle m+1 \rangle\right\}\right) \subset S_1,$$

what contradicts $x \in H_i \cap C$. Therefore $A'_i \cap S_1 = \emptyset$ and by $A'_i \subset A_j$ for $j \neq i$ we deduce that $A_j \cap \bar{S}_2 \neq \emptyset$ for each $j \neq i$. Every set A_j intersects the set A_1 , hence it has common points with S_1 . Thus, by the convexity of the sets A_j , it follows (iii).

Remark 2. Theorem 5 is not true in the case m = 1. For motivate this, it is sufficient to consider A_1 and A_2 as being two opposed open halfspaces (case (a)), respectively two opposed sides of a square in \mathbb{R}^2 and x the centre of the square (case (b)).

We close our paper giving a new proof for the main result (Theorem 3) in [2].

THEOREM 6. Let $\{A_1, A_2, ..., A_{m+1}\}$ be an m - family of

- (a) open convex subsets of a topological vector space E
 or
- (b) closed convex subsets of a locally convex space E, at least one being compact.

Then there is a closed flat L in E, of deficiency m, such that:

- (i) L ∩ (∪ {A_i : i ∈ ⟨m + 1⟩}) = ∅;
- (ii) $L \cap conv(\bigcup \{A_i : i \in (m+1)\}) \neq \emptyset$.

Proof. The proof is by induction on m. In the case m = 1 the required flat is a hyperplane. For two disjoint convex sets A_1 , A_2 both open in a topological vector or both closed and at least one compact in a locally convex space, by two standard separation theorems [5, pp.32 and 64] there is a closed hyperplane that strictly separates A_1 from A_2 .

Assume inductively that the statement is true for m-1 ($m \ge 2$) and let $\{A_1, A_2, ..., A_{m+1}\}$ be an m - family as described in the theorem. In the case (b) we suppose, without loss of generality, that at least one of the sets $A_1, A_2, ..., A_m$ is compact. Fix any x in the set $C \setminus (\bigcup \{B_i : i \in \langle m+1 \rangle \})$. By Theorem 5 there is a closed hyperplane H which contains x, intersects each of the sets A_i ($i \in \langle m \rangle$) and does not intersect A_{m+1} . Denote by S_1 and S_2 the two open halfspaces bordered by H, supposing $A_{m+1} \subseteq S_1$.

From $x \in C = \text{conv}(A_{m+1} \cup B_{m+1})$ (see Theorem 2, (c)) and $x \notin B_{m+1}$ it follows that there exist two points $y \in A'_{m+1}$ and $z \in B_{m+1}$ such that xbelongs to the open line segment joining y, z. Since $z \in B_{m+1} \subset A_{m+1} \subset S_1$, it follows that $y \in S_2$, hence

$$\cap \{A_i : i \in (m)\} \cap S_2 \neq \emptyset.$$
 (1)

Define $A_i^* = A_i \cap H$ for each $i \in \langle m \rangle$ and we intend to prove that $\{A_1^*, A_2^*, ..., A_m^*\}$ is an (m-1) - family. First we shall show that any m-1 sets (for instance $A_1^*, A_2^*, ..., A_{m-1}^*$) have a common point.

By (1) we have $\cap \{A_i : i \in (m-1)\} \cap S_2 \neq \emptyset$. Also

$$\cap \{A_i : i \in (m-1)\} \cap S_1 \supset \cap \{A_i : i \in (m-1)\} \cap A_{m+1} \neq \emptyset.$$

So, the convexity of the set $\cap \{A_i : i \in (m-1)\}$ implies

$$\cap \{A_i^* : i \in (m-1)\} = \cap \{A_i \cap H : i \in (m-1)\} = \cap \{A_i : i \in (m-1)\} \cap H \neq \emptyset.$$

Since $x \in \text{conv}(\bigcup \{A'_i : i \in \langle m+1 \rangle\})$, there are $x_i \in A'_i$ $(i \in \langle m+1 \rangle)$ such that $x \in \text{conv}\{x_1, x_2, ..., x_{m+1}\}$ (see [9, p.165]). The family $\{A'_1, A'_2, ..., A'_{m+1}\}$ being in general position (see Theorem 1), the convex hull of the points x_i $(i \in \langle m+1 \rangle)$ is an m- dimensional simplex which will be denote by Δ . If F_i is the face of Δ which does not contain the vertex x_i $(i \in \langle m+1 \rangle)$ then we have $x_k \in A'_k \subset B_i$ for $k \neq i$ and by the convexity of the sets B_i it follows $F_i \subset B_i$. Since x was chosen from $C \setminus (\bigcup \{B_i : i \in \langle m+1 \rangle\})$ we deduce that x belongs to the relative interior of simplex Δ .

We claim that $\cap \{A_i^*: i \in \langle m \rangle\} = \emptyset$. Let us suppose that there is a point $y \in \cap \{A_i^*: i \in \langle m \rangle\} = \cap \{A_i: i \in \langle m \rangle\} \cap H$. Then if d is the line through x and y, it will intersect the relative boundary of Δ in two points. Let u be that point of intersection for which x belongs to the open segment [u, y]. By $x, y \in H$ it follows $d \in H$ and since $F_{m+1} \subset B_{m+1} \subset S_1$, the point u can not belong to the face F_{m+1} . Let $j \in \langle m \rangle$ such that $u \in F_j$, hence $u \in B_j$. As $\cap \{A_i: i \in \langle m \rangle\} = A'_{m+1} = \cap \{B_i: i \in \langle m \rangle\}$, it follows $y \in B_j$. Since $u \in B_j$ and $x \in [u, y]$ one obtains $x \in B_j$, which contradicts $x \in C \setminus (\cup \{B_i: i \in \langle m+1 \rangle\})$. Therefore $\cap \{A_i^*: i \in \langle m \rangle\} = \emptyset$, hence $\{A_1^*, A_2^*, ..., A_m^*\}$ is an (m-1) - family. Obviously the sets A_i^* are open in the case (a), respectively closed and at least one compact in the case (b). The inductive assumption is now applicable to the (m-1) - family $\{A_1^*, A_2^*, ..., A_m^*\}$ in H. Thus there exists a closed flat L of deficiency m-1 in H, hence of deficiency m in E such that

$$L \cap (\bigcup \{A_i^* : i \in \langle m \rangle\}) = \emptyset$$
 and $L \cap \text{conv}(\bigcup \{A_i^* : i \in \langle m \rangle\}) \neq \emptyset$.

Since $A_{m+1} \subset S_1$, $L \subset H$ and $A_i^* = A_i \cap H$ it follows that

$$L \cap (\cup \{A_i : i \in (m+1)\}) = \emptyset.$$

Also

$$L \cap \operatorname{conv} \left(\cup \{A_i : i \in (m+1)\} \right) \supset L \cap \operatorname{conv} \left(\cup \{A_i : i \in (m)\} \right) \supset$$

 $\supset L \cap \operatorname{conv} \left(\cup \{A_i^* : i \in (m)\} \right) \neq \emptyset$

and the proof is complete.

REFERENCES

- M. Balaj, Finite families of convex sets with convex union, "Babeş-Bolyai" University, Res.Sem. Preprint Nr.7 (1993), 113-116
- [2] M. Balaj, m Families and common transversals, Publ.Inst.Math. (Beograd) 60(74) (1996), 75-80
- [3] M. Balaj, On separation of sets by convex functionals, Mathematica (Chij), 39(62) (1997), 17-20
- [4] C. Berge, Sur une proprieté combinatoire des ensembles convexes, C.R.Acad. Sci.Paris 248 (1959), 2698-2699
- [5] R. Cristescu, Topological Vector Spaces, Edit. Academiei, București, Noordhoff International Publ. Leyden, 1974
- [6] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math. Verein. 32 (1923), 175-176
- [7] V. Klee, On certain intersection properties of convex sets, Canad.J.Math. 3 (1951), 272-275