THE FOURIER-BOHR SERIES OF A PSEUDO ALMOST PERIODIC MEASURE

Silvia-Otilia CORDUNEANU

Abstract

We define the Fourier-Bohr coefficients of a pseudo almost periodic measure and we establish some of their properties. We also define the Fourier-Bohr series of a pseudo almost periodic measure and we write the corresponding series for the convolution of a bounded measure and a pseudo almost periodic measure.

Finally, we study two convergent Fourier-Bohr series, and we establish a property of their sums.

1. Introduction

In [2] L. Argabright and J. Lamadrid introduced and studied the Fourier-Bohr series for an almost periodic measure. In this paper we generalize this concept and define the Fourier-Bohr coefficients for a pseudo almost periodic measure and the Fourier-Bohr series for such a measure.

Next we establish some properties of the coefficients and we give a necessary and sufficient condition so that a pseudo almost periodic measure be in a certain space of measures. This condition is formulated in terms of the Fourier-Bohr coefficients.

In [6] we proved that the convolution of a bounded measure and a pseudo almost periodic measure is a pseudo almost periodic measure. Now we calculate the Fourier-Bohr coefficients for this convolution and then we write the Fourier-Bohr series.

Finally, we study two convergent Fourier-Bohr series, and we establish a property of their sums.

2. Terminology and notations

Consider a Hausdorff σ -compact, locally compact Abelian group G with the unit element ϵ and let λ be the Haar measure on G.

Let us denote by C(G) the set of all bounded continuous complex-valued functions on G. The set C(G) is a Banach space endowed with the supremum norm. Throughout this paper, $\|\cdot\|$ denotes the supremum norm on C(G). For $f \in C(G)$ and $a \in G$, the translate of f by a is the function $f_a(x) = f(xa)$ for all $x \in G$. Denote by K(G)the vector space of all continuous complex-valued functions on G, having a compact support.

For each compact subset A of G, we denote by K(G, A) the vector subspace of K(G) consisting of those functions which vanish outside A; for a compact subset A of G, the vector space K(G, A) is a Banach space under the supremum norm. We regard the space K(G) as a topological vector space with the inductive limit topology defined on it by the spaces K(G, A), A being a compact set in G. Let us denote by m(G) the dual of the topological vector space K(G). We use $m_F(G)$ to denote the subspace of m(G) consisting of all bounded measures, that is, all linear functionals which are continuous with respect to the supremum norm on K(G).

The action of a measure $\mu \in m(G)$ on a function $f \in K(G)$ will be denoted either $\mu(f)$ or $\int_G f(x)d\mu(x)$.

Corresponding to a measure $\mu \in m(G)$, one defines the variation measure $|\mu| \in m(G)$ by $|\mu|(f) = \sup\{|\mu(g)| : g \in K(G), |g| \le f\}$ for all $f \in K(G), f \ge 0$.

Definition 2.1. [7] The convolution $f * \mu$ of a Borel function f on G with a measure $\mu \in m(G)$ is the function given by the convolution formula

$$f * \mu(x) = \int_{G} f(xy^{-1})d\mu(y), x \in G$$

provided that

$$\int_{G} |f(xy^{-1})| d |\mu| (y) < \infty \text{ for all } x \in G.$$

Definition 2.2. [1] We say that two measures $\mu, \nu \in m(G)$ are convolable if, for every $f \in K(G)$, the function $(x, y) \in G \times G \rightarrow f(xy) \in C$ is integrable over $G \times G$ with respect to the product measure $|\mu| \times |\nu|$.

In this case, the measure $\mu * \nu$ is defined by

$$\mu * \nu(f) = \iint_{\mathcal{O}_G} f(xy) d\mu(x) d\nu(y) = \iint_{\mathcal{O}_G} f(xy) d\nu(x) d\mu(y)$$

for all $f \in K(G)$.

Definition 2.3. [2] We say that a measure $\mu \in m(G)$ is translation-bounded if for every compact set $A \subseteq G$

$$\sup_{x \in G} |\mu|(xA) < \infty.$$

The vector space of translation-bounded measures will be denoted by $m_B(G)$.

Remark 2.1. [2] We identify an arbitrary measure $\mu \in m_B(G)$ with an element of the space $[C_U(G)]^{K(G)}$ by means of the following equation which signifies the identification:

$$\mu = \{f * \mu\}_{f \in K(G)}.$$

From this identification we have the inclusion

$$m_B(G) \subset [C_U(G)]^{K(G)}$$
.

The space on the right hand side has the product topology defined by the Banach space structure on $C_U(G)$. The space $m_B(G)$ is a locally convex space of measures with the relative topology. A system of seminorms for the product topology on $m_B(G)$ is given by the family $\{\|\cdot\|_f\}_{f\in K(G)}$, where, for a function $f\in K(G)$,

$$||\mu||_f = ||f * \mu||$$
, for all $\mu \in m_B(G)$.

Definition 2.4. [8] A function $g \in C(G)$ is called an almost periodic function on G if the family of translates of g, $\{g_a : a \in G\}$ is relatively compact in the sense of uniform convergence on G.

Let us denote by AP(G) the set of all almost periodic functions on G.

Theorem 2.1. [8] Let G be a Hausdorff σ -compact, locally compact Abelian group. There exists an increasing sequence $(H_n)_{n\in\mathbb{N}}$ of open, relatively compact subsets of Gwith $G = \bigcup_{n=1}^{\infty} H_n$ such that, for each $x \in G$,

$$\lim_{n\to\infty} \frac{\lambda(xH_n\Delta H_n)}{\lambda(H_n)} = 0.$$

In what follows, we consider a sequence $(H_n)_{n\in\mathbb{N}}$ whose existence is assured by Theorem 2.1.

Let us consider

$$PAP_0(G) = \{ \varphi \in C(G) : \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \int_{H_n} |\varphi(x)| d\lambda(x) = 0 \}.$$

Definition 2.5. [3] A function $f \in C(G)$ is called a pseudo almost periodic function if $f = g + \varphi$, where g = AP(G) and $\varphi = PAP_0(G)$.

Denote by PAP(G) the set of all pseudo almost periodic functions defined on the group G.

Theorem 2.2. [3] If $f \in PAP(G)$, then the limit

$$\lim_{n\to\infty} \frac{1}{\lambda(H_n)} \int_{H_n} f(x) d\lambda(x)$$

exists and is finite.

Definition 2.6. [3] For $f \in PAP(G)$, we introduce the mean value of the function f, denoted by M(f), as the limit

$$M(f) = \lim_{n\to\infty} \frac{1}{\lambda(H_n)} \int_{H_n} f(x) d\lambda(x).$$

Denote by \hat{G} the group of characters of the group G.

Proposition 2.1. [3] If $f \in PAP(G)$, there exists an at most countable set of characters of the group G, denoted by $\{\gamma_n \in \hat{G} : n \in \mathbb{N}\}$, such that $M(f\overline{\gamma}_n) \neq 0$, for $n \in \mathbb{N}$.

Definition 2.7. [3] Let f be a function in PAP(G) and let $\{\gamma_n \in \hat{G} : n \in \mathbb{N}\}$ be the set of characters of the group G, such that $M(f\overline{\gamma}_n) \neq 0$, $n \in \mathbb{N}$. We define the Fourier series of the pseudo almost periodic function f by

$$\sum_{n=1}^{\infty} a_n \gamma_n(x), x \in G$$

where

$$a_n = M(f \cdot \overline{\gamma}_n), n \in \mathbb{N}.$$

The complex numbers a_n , $n \in \mathbb{N}$, are called the Fourier coefficients of the function f.

Theorem 2.3. [4] (Parseval's equality) Let f be a function in PAP(G) and let

$$\sum_{n=1}^{\infty} a_n \gamma_n(x), x \in G$$

be the Fourier series of the function f. Then we have

$$M(\mid f\mid^2) = \sum_{n=1}^{\infty} \mid a_n\mid^2.$$

Theorem 2.4. [4] (Mean convergence) Let f be a function in PAP(G) and let

$$\sum_{n=1}^{\infty} a_n \gamma_n(x), x \in G$$

be the Fourier series of the function f. Then

$$\lim_{N\to\infty} M(\mid f - \sum_{k=1}^{N} a_k \gamma_k \mid^2) = 0.$$

Definition 2.8. [9] The measure $\mu \in m_B(G)$ is said to be an almost periodic measure, if for every $f \in K(G)$, we have $f * \mu \in AP(G)$.

The vector space of all almost periodic measures will be denoted by ap(G). Set

$$pap_0(G) = \{ \mu \in m_B(G) : g * \mu \in PAP_0(G) \text{ for all } g \in K(G) \}.$$

Definition 2.9. [5] We say that $\mu \in m_B(G)$ is a pseudo almost periodic measure, if $\mu = \mu_{ap} + \mu_0$, where $\mu_{ap} \in ap(G)$ and $\mu_0 \in pap_0(G)$.

We denote by pap(G) the set of all pseudo almost periodic measures on G.

Theorem 2.5. [5] Let μ be a pseudo almost periodic measure. Then there exists a unique complex number $M(\mu)$ such that $M(\mu) = M(f * \mu)$, for every function $f \in K(G)$ with $\int_G f(x) d\lambda(x) = 1$.

Definition 2.10. [5] Let μ be a pseudo almost periodic measure. We call the mean value of the measure μ and we denote it by $M(\mu)$, the complex number defined by

$$M(\mu) = M(f * \mu),$$

where $f \in K(G)$ with $\int_{G} f(x)d\lambda(x) = 1$.

Notation 2.1. For $\gamma \in \hat{G}$ and $g \in K(G)$ we denote

$$\hat{g}(\gamma) = \int_{G} \overline{\gamma}(x)g(x)d\lambda(x).$$

Definition 2.11. [2] By a Fourier-Bohr series we shall mean a formal sum

$$\sum_{\gamma \in \hat{G}} c_{\gamma} \gamma$$

such that the complex function $\gamma \in \hat{G} \rightarrow c_{\gamma} \in C$ has the property that, for every $g \in K(G)$,

(1)
$$\sum_{\gamma \in \hat{O}} |\hat{g}(\gamma)c_{\gamma}|^{2} < \infty,$$

called the summability property.

The left hand side in (1) becomes

$$\sum_{n=1}^{\infty} |\lambda(\overline{\gamma}_n g)|^2 |M(\overline{\gamma}_n \mu)|^2$$

and using (2) we find that

$$\sum_{n=1}^{\infty}\mid\lambda(\overline{\gamma}_{n}g)\mid^{2}\mid M(\overline{\gamma}_{n}\mu)\mid^{2}=M(\mid g\ast\mu\mid^{2})<\infty.\square$$

Definition 3.1. Let μ be a measure in pap(G). The complex numbers $c_{\gamma}(\mu) = M(\overline{\gamma}\mu)$, $\gamma \in \hat{G}$ are called the Fourier-Bohr coefficients of μ and the series

$$\sum_{\gamma \in \hat{G}} c_{\gamma}(\mu) \gamma$$
,

is said to be the Fourier-Bohr series of μ .

Proposition 3.1. Let μ be a measure in pap(G), $\mu = \mu_{ap} + \mu_0$, $\mu_{ap} \in ap(G)$, $\mu_0 \in pap_0(G)$. Then

- a) $c_{\gamma}(\mu_0) = 0$, $\gamma \in \hat{G}$;
- b) $c_{\gamma}(\mu_{ap}) = c_{\gamma}(\mu), \quad \gamma \in \hat{G};$
- c) The Fourier-Bohr series of μ coincides with the Fourier-Bohr series of μ_{ap}.

Proof. a) For all $\gamma \in \hat{G}$, $\overline{\gamma}\mu_0 \in pap_0(G)$ [6, Theorem 2.2]. Thus $M(\overline{\gamma}\mu_0) = 0$ and this means $c_{\gamma}(\mu_0) = 0$, $\gamma \in \hat{G}$.

b) For all $\gamma \in \hat{G}$ we obtain

$$c_{\gamma}(\mu) = M(\overline{\gamma}\mu) = M(\overline{\gamma}\mu_{ap}) + M(\overline{\gamma}\mu_{0}) = M(\overline{\gamma}\mu_{ap}) = c_{\gamma}(\mu_{ap}).$$

c) The two series of μ and μ_{up} coincide because they have the same Fourier-Bohr coefficients.□

Notation 3.1. Let f be a function in K(G). We denote by f', the function $f': G \to C$, $f'(x) = f(x^{-1})$. We have that $f' \in K(G)$ [7, p. 406].

The next corollary immediately follows:

Corrolary 3.1. Let μ be a measure in $pap_0(G)$. Then the Fourier-Bohr series of μ is the null series.

Theorem 3.1. Let μ be a measure in pap(G). Then μ is in $pap_0(G)$ if and only if $c_{\gamma}(\mu) = 0$ for all $\gamma \in \hat{G}$.

Proof. The necessity follows from Proposition 3.1 a).

We now prove the sufficiency. Suppose that μ is in ap(G), $\mu \neq 0$, and consider a function f in K(G). Then $f * \mu \in AP(G)$.

For all $\gamma \in \hat{G}$ we obtain that

$$M[\overline{\gamma}(f * \mu)] = \lambda(\overline{\gamma}f)c_{\gamma}(\mu) = 0.$$

It follows that the Fourier coefficients of the function $f * \mu$ are null, and moreover the Fourier series of the function $f * \mu$, is the null series.

We obtain that $f * \mu = 0$ [2, p.138]. Thus $f * \mu = 0$ for all $f \in K(G)$. Moreover

$$\mu(f) = \int_G f(x)d\mu(x) = \int_G f'(ex^{-1})d\mu(x) = f' * \mu(e) = 0.$$

Finally, we remark that $\mu(f) = 0$ for all $f \in K(G)$. This means that $\mu = 0$ and this contradicts our hypothesis that $\mu \neq 0$. It follows that $\mu \in pap_0(G)$. \square

Notation 3.2. For $\gamma \in \hat{G}$ and $\nu \in m_F(G)$ we denote

$$\hat{\nu}(\gamma) = \int_{G} \overline{\gamma}(x) d\nu(x).$$

Theorem 3.2. Let μ be a measure in pap(G) and ν a measure in $m_F(G)$. Then the pseudo almost periodic measure $\nu * \mu$ has the following Fourier-Bohr series:

$$\sum_{\gamma \in \hat{G}} \hat{\nu}(\gamma) c_{\gamma}(\mu) \gamma.$$

Proof. Let γ be in \hat{G} . Then $\overline{\gamma}\nu \in m_F(G)$. We also have that $\overline{\gamma}\mu \in pap(G)$ [6, Corollary 2.1] and $\overline{\gamma}\nu * \overline{\gamma}\mu \in pap(G)$ [6, Theorem 2.1]. Let f be a function in K(G) such that $\lambda(f) = 1$.

We obtain:

$$M[\overline{\gamma}(\nu * \mu)] = M(\overline{\gamma}\nu * \overline{\gamma}\mu) = M[f * (\overline{\gamma}\nu * \overline{\gamma}\mu)] = M[\overline{\gamma}\nu * (f * \overline{\gamma}\mu)].$$

The third equality follows from Theorem 1.2 [1].

$$M[\overline{\gamma}\nu * (f * \overline{\gamma}\mu)] = \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \int_{H_n} [\overline{\gamma}\nu * (f * \overline{\gamma}\mu)](x) d\lambda(x) =$$

 $= \lim_{n \to \infty} \frac{1}{\lambda(H_n)} \int_{H_n} \int_G (f * \overline{\gamma}\mu)(xy^{-1}) \overline{\gamma}(y) d\nu(y) d\lambda(x).$

Using Fubini's Theorem we obtain, for all $n \in \mathbb{N}$,

(3)
$$\frac{1}{\lambda(H_n)} \int_{H_n} \int_G (f * \overline{\gamma} \mu)(xy^{-1}) \overline{\gamma}(y) d\nu(y) d\lambda(x) =$$

$$= \int_G \overline{\gamma}(y) \left[\frac{1}{\lambda(H_n)} \int_{H_n} (f * \overline{\gamma} \mu)(xy^{-1}) d\lambda(x) \right] d\nu(y).$$

We consider the sequence of continuous functions $(F_n)_{n\in\mathbb{N}}$, where for all $n\in\mathbb{N}$, $F_n:G\to C$, and

$$F_n(y) = \frac{1}{\lambda(H_n)} \int_{H_n} (f * \overline{\gamma} \mu)(xy^{-1}) d\lambda(x), y \in G.$$

On the other hand, for all $n \in \mathbb{N}$ we have

$$||F_n|| = \sup_{y \in G} |\frac{1}{\lambda(H_n)} \int_{H_n} (f * \overline{\gamma}\mu)(xy^{-1}) d\lambda(x) | \le ||f * \overline{\gamma}\mu|| < \infty,$$

and the constant function $y \to ||f * \overline{\gamma}\mu||$ $(y \in G)$, is integrable with respect to the measure $\overline{\gamma}\nu \in m_F(G)$.

Since

$$\lim_{n\to\infty} F_n(y) = \lim_{n\to\infty} \frac{1}{\lambda(H_n)} \int_{H_n} (f*\overline{\gamma}\mu)(xy^{-1}) d\lambda(x) = M(f*\overline{\gamma}\mu) = M(\overline{\gamma}\mu) = c_{\gamma}(\mu),$$

from (3) and from Lebesgue's Dominated Convergence Theorem we find that

$$\begin{split} M[\overline{\gamma}(\nu*\mu)] &= \lim_{n\to\infty} \int_G \overline{\gamma}(y) \left[\frac{1}{\lambda(H_n)} \int_{H_n} (f*\overline{\gamma}\mu)(xy^{-1}) d\lambda(x) \right] d\nu(y) = \\ &= \int_G \overline{\gamma}(y) \left[\lim_{n\to\infty} \frac{1}{\lambda(H_n)} \int_{H_n} (f*\overline{\gamma}\mu)(xy^{-1}) d\lambda(x) \right] d\nu(y) = \\ &= c_{\gamma}(\mu) \int_G \overline{\gamma}(y) d\nu(y) = c_{\gamma}(\mu) \hat{\nu}(\gamma). \Box \end{split}$$

Theorem 3.3. Let μ be a measure in pap(G) and f a function in K(G). Consider $\{\gamma_n \in \hat{G} : n \in \mathbb{N}\}$ the set of characters such that $M[\overline{\gamma}_n(f * \mu)] \neq 0, n \in \mathbb{N}$. Then

$$\lim_{N\to\infty} M[\mid f * \mu - \sum_{n=1}^{N} \tilde{f}(\gamma_n) c_{\gamma_n}(\mu) \gamma_n \mid^2] = 0.$$

Proof. From Theorem 2.4 we obtain

(4)
$$\lim_{N\to\infty} M[|f*\mu - \sum_{k=1}^{N} M[\overline{\gamma}_n(f*\mu)]\gamma_n|^2] = 0.$$

Combining (4) with the equality (2) obtained in the proof of Lemma 3.1 namely,

$$M[\overline{\gamma}_n(f * \mu)] = \hat{f}(\gamma_n)c_{\gamma_n}(\mu),$$

our statement follows.□

Theorem 3.4. Let ν be a measure in $m_F(G)$ and μ a pseudo almost periodic measure having the Fourier-Bohr series

$$\sum_{\gamma \in G} c_{\gamma}(\mu) \gamma,$$

Let f be a pseudo almost periodic function with the Fourier series

$$\sum_{n=1}^{\infty} a_n \gamma_n.$$

Then the following properties hold:

a) The series

$$\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \gamma_n$$

converges to a measure $\tau \in ap(G)$ in the product topology;

b) The series

$$\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \hat{\nu}(\gamma_n) \gamma_n$$

converges to a measure $\theta \in ap(G)$ in the product topology;

c) $\nu * \tau = \theta$.

Proof. a) We have the property

$$\sum_{n=1}^{\infty} |a_n|^2 = M(|f|^2) < \infty,$$

hence we can use Lemma 8.1 [2, p.133] and the statement follows;

b) For every $n \in \mathbb{N}$ we obtain

$$|\hat{\nu}(\gamma_n)| = |\int_G \overline{\gamma}_n(x) d\nu(x)| \le |\nu| (G) < \infty.$$

Therefore

$$\sum_{n=1}^{\infty} \mid a_n \hat{\nu}(\gamma_n) \mid^2 \leq [\mid \nu \mid (G)]^2 \sum_{n=1}^{\infty} \mid a_n \mid^2 = [\mid \nu \mid (G)]^2 M(\mid f \mid^2).$$

Hence we can also use Lemma 8.1 [2, p.133] and the statement follows;

c) We shall prove that c_γ(ν * τ) = c_γ(θ) for every γ ∈ Ĝ. Let γ be in Ĝ. It follows from **Theorem 3.2** that c_γ(ν * τ) = v̄(γ)c_γ(τ). We have γ̄τ ∈ ap(G) [9, p. 84].

We can see that the series

$$\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \overline{\gamma} \gamma_n$$

is convergent in the product topology, to the measure $\overline{\gamma}\tau \in ap(G)$.

One deduces that, for $g \in K(G)$,

$$\overline{\gamma}\tau(g) = \tau(g\overline{\gamma}) = (g\overline{\gamma})' * \tau(e) = g'\gamma * \tau(e).$$

Using the convergence of the series $\sum_{n=1}^{\infty} a_n c_m(\mu) \gamma_n$ to the measure $\tau \in ap(G)$ in the product topology, and the fact that $g'\gamma \in K(G)$, we find:

$$g'\gamma * \tau(e) = \sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu)[g'\gamma * \gamma_n(e)] =$$

= $\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \widehat{g'\gamma}(\gamma_n), g \in K(G).$

Therefore,

$$\overline{\gamma}\tau(g) = \sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \widehat{g'\gamma}(\gamma_n), g \in K(G).$$

Furthermore, for $g \in K(G)$, it follows

$$g * \overline{\gamma} \tau = \sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \widehat{g} \widehat{\gamma}(\gamma_n) \overline{\gamma} \gamma_n.$$

On the other hand we have

$$\begin{split} |\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \widehat{g} \widehat{\gamma}(\gamma_n) \overline{\gamma} \gamma_n | &\leq \sum_{n=1}^{\infty} |a_n| |c_{\gamma_n}(\mu)| |\widehat{g} \widehat{\gamma}(\gamma_n)| \leq \\ &\leq \left[\sum_{n=1}^{\infty} |a_n|^2 \right]^{1/2} \left[\sum_{n=1}^{\infty} |c_{\gamma_n}(\mu)|^2 |\widehat{g} \widehat{\gamma}(\gamma_n)|^2 \right]^{1/2}. \end{split}$$

Taking into account that $g\gamma \in K(G)$ and that the Fourier-Bohr series of μ satisfies (1) we obtain that

$$\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \widehat{g\gamma}(\gamma_n)$$

is absolutely convergent and that the convergence of the series

$$\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \widehat{g} \widehat{\gamma}(\gamma_n) \overline{\gamma} \gamma_n$$

is uniform. This shows the convergence of the series

$$\sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \overline{\gamma} \gamma_n$$

in the product topology, to $\overline{\gamma}\tau \in ap(G)$.

Thus,

$$\overline{\gamma}\tau = \sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) \overline{\gamma} \gamma_n.$$

Using the continuity of M on ap(G) [9, Corollaire 1, p. 82] we obtain

$$c_{\gamma}(\tau) = M(\overline{\gamma}\tau) = M(\lim_{n \to \infty} \sum_{k=1}^{n} a_k c_{\gamma_k}(\mu) \overline{\gamma} \gamma_k) = \sum_{n=1}^{\infty} a_n c_{\gamma_n}(\mu) M(\overline{\gamma} \gamma_n).$$

For $\alpha \in \hat{G}$ and for $x \in G$ we see that

$$M(\alpha) = M(\alpha_x) = M[\alpha(x)\alpha] = \alpha(x)M(\alpha).$$

Hence,

$$M(\alpha) = \begin{cases} 0, & \text{if } \alpha \in \hat{G}, & \alpha \neq 1; \\ 1, & \text{if } \alpha = 1. \end{cases}$$

It is obvious that $\overline{\gamma}\gamma_n \in \hat{G}$, $n \in \mathbb{N}$. Therefore, for $n \in \mathbb{N}$, we have

(5)
$$M(\overline{\gamma}\gamma_n) = \begin{cases} 1, & \text{if } \gamma \in \{\gamma_k \in \hat{G} : k \in \mathbb{N}\}, \ \gamma = \gamma_n; \\ 0, & \text{otherwise.} \end{cases}$$

This means that, if $\gamma \in \{\gamma_k \in \hat{G} : k \in \mathbb{N}\}$, $c_{\gamma}(\nu * \tau) = \hat{\nu}(\gamma_p) \ a_p c_{\gamma_p}(\mu)$, where $p \in \mathbb{N}$ is such that $\gamma = \gamma_p$, while in the other case, $c_{\gamma}(\nu * \tau) = 0$.

We similarly deduce that $c_{\gamma}(\theta)$ has the same value to that of $c_{\gamma}(\nu * \mu)$,

Hence, one finds that the measures θ and $\nu * \tau$ are in ap(G) and they have the same Fourier-Bohr coefficients. It follows from Corollary 8.2 [2, p. 140] that $\nu * \tau = \theta$. \square

References

- L.N. Argabright and J. Gil de Lamadrid, "Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups", Mem. Amer. Math. Soc. 145 (1974).
- [2] L.N. Argabright and J. Gil de Lamadrid, "Almost Periodic Measures", Mem. Amer. Math. Soc. 428 (1990).
- [3] S.O. Corduneanu, "Pseudo Almost Periodic Functions on Locally Compact Groups"; (to appear in Acta Technica Napocensis).
- [4] S.O. Corduneanu, "Some Properties of the Pseudo Almost Periodic Functions on Locally Compact Groups"; (to appear).
- [5] S.O. Corduneanu, "Pseudo Almost Periodic Measures on Locally Compact Abelian Groups"; (to appear).
- [6] S.O. Corduneanu, Some Properties of the Pseudo Almost Periodic Measures; (to appear).
- [7] N. Dinculeanu, "Integrarea pe Spații Local Compacte", Editura Academiei R.P.R., București, 1965.
- [8] E. Hewitt and K.A. Ross, "Abstract Harmonic Analysis"; Vol. I: "Structure of Topological Groups; Integration Theory; Group Representations", Die Grundlehren der Math. Wissenschaften, Band 115, Springer Verlag, Berlin, Göttingen, Heidelberg, 1963.
- [9] J. Gil de Lamadrid, "Sur les Mesures Presque Périodiques", Séminaire KGB sur les marches aléatoires, Astérisque 4, 1973.

Received 3.07.1998 Department of Mathematics
Technical University "Gh. Asachi" Iaşi
6600 Iasi