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ASYMTOTIC BEHAVIOR OF THE NONOSCILLATORY SOLUTION OF
THE N-TII ORDER DIFERENTIAL EQUATION WITH DELAY
DEPENDING ON THE UNKNOW FUNCTION

VINCENT SOLTES AND LIBUSA REVESZOVA
Abstract

The asymptotic behavior of the solutions of the differential equations

€ ol U3 ol €M f ni (100D + R () x( AL (1)) =0

iz considerad.

We consider the n-th order differential equation of the form
Lo x(t)+= fitxf 1), x{ AL x{)N=0 i1
where
Lix({ = thx'( 1)
Lix()=r(Lix(ty ., fori=2, . n1, (2)
Ll 1) = (Lopx( 1))
Troughout the paper we shall assume that :

o
Hl. n=C(R- R, ) and Jauriiy = fori=1,2..0-1
H2. f=C {H:,.wR:, R }, fit, u,v) is nondescreasing function in u and v for cach fixed 1.
Hi. uf(t uv)=0for uv=0and t arbitrary
H4. A e C{R, xR, R)
HS. There exist a function A«{t} € C(R,, R)and T £ R, such tha
limAs{ )= o and A} < A(t,x) for t2T,
|—xd
H6. There exist a function A (1)eC{R+,R) and TR+ such that A'(t) is nondecreasing function
fort=T and A(LX) = iu‘[l‘.lﬂ t fort=T,xeK

By a solution of equation (1) s meant & fuction x(t), such that Li x( 1}, 1 £i=n exist
and are continuous on [1,20) and x(t) satisfies (1). We restrict our considerations to those
solutions of (1) which exist on some ray [Ty o) and satisfy

sup {(y(O): u=t<om >0 forany e [Tym).

Define T, =inf {a(tx):t=T.x € R},

Lemma 1. Let x(1) be a nonoscillatory solution of equation (1). Then there exist an
integer 1,0<1<n andty =ty with ntl odd such tha

x(Lix(h=0 , 1sisl, {3)
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(D7 L x)=0 , 1sis<o
fﬂrﬂ“lzt;,
Iim |L;x(f) |=e for i=1,...1-2,
§—poe

lim Ly x(0=0  , limLix(t) 18 own
(] [ ]

and
limLix()y=0 forj=1+1, ., 0-L
=z
Lemma generalizes a well- known lemma of Kiguradee and can be prooved similarly.

A function x(1) satisfying (3) is said to be a function of degree | (see [ 2 ). The set of
all nonoscillatory solutions of degree | of equation (1) is denoted by N,

If
N = fxeN;: lim Ly x(t) = 0},
N = {xeN; : lim Ly x(6) = 0},
§—kus
then Nj= N UN% |
Ny=Na= .. =Ny =4¢ forneven
and

Ny=MN:=..= Ny = ¢ for nodd .
We ghall use the following notation
1 5 3.1

dy 1 (T1s o Tjs 1) =_Jr- 1/r1(51) Jrl.l'r:{ﬁl]l _!-I_I-r.-"rjm_.} ds; ... dspds;
b Ty e 3O =talry, o rjs t) dor 3= 1.2, ., n-1

Using H; we have thal
lim |67 (11, 53 1] e For all ke,
lbr (e iz 0 | = Lr G iz 1) | ELrLaL:E1EI|k|:>|I|

et (r1, o0 =0

Lemma 2. Let x(t) be a nonoscillatory solution of equation (1) degree 121, Then x(t)
possesses one of the following propertics:

lim x(6)/ d (rp, ccnmst)=c20 {F1)
lim %)/ ée (1, o3 =0 , lim |x(t)|=20; (P2)
] |

lim () / & (1, e m; =0, lim | x(t) =5 (P3)

[==aax
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Proof. Let x(t) be a nonoscillatory solution of equation (1) degree |. Using L."Hospital
rule we have

lim x{t) ¢ dy (ko 1s B = lime L g A1)

i—¢m | —ees

and from the Lemma 1 it follows that Lemma 2 is true.

Remark 1. It is obviously that x{t) possesses P1 (P2 or I'3) if and only 1 x(theN
(x(t)=N"y.

Theorem 1. Let equation (1) has a nonoscillatory solution x(1) degree | possesscs
property (P1). Then

.:Tfﬂsﬂ P (712 ooos 715 0, © e {1y e T3 Al L)) dt =00 (6)

for some constants k20 and ¢ >0,
Proof. Let x(t) be a nonoscillatory solutions of equation (1) degree | for which

lim x(t)/ dy (ry, ..., T3 ) = o= 00

(ST

Without loss of generality, we suppose that ¢=0 (the proof for ¢;<0 is similar). Then there
exista ¢ = 0 and t; = T =0 such that
x(t)z oy (11, - 1L L) {7
KAL) 2 € § (Fr o B3 As( 1)), 12 1 (using tes and (4))
Integrating (1) from t to oo and using properties of the solution x(1) we obtain
J fizx(s), x(A(z,x(s)))) ds <o .
1
From the last inequality in view of (7) we obtain
FF(s.c feiry, ;s e du (.. n; A 5)))ds <0
1
which implies (6). This completes the prool.

Theorem 2. Suppose that for each fixed k=20 and T 20

LHm ot (fpy ey Tnars 1) e (s vy It s =0 (8}
1wl L .

uniformly on any interval of the form [17, ) [ T" > T,
If for some ¢>0 and k 20 we have

JIF (L by Tty orn Tt 310, © i T1, o Tar 3 AT(RD) [ < 00 (9}

then equation (1) has a solution degree (n-1) with property (1)

Proof. Suppose thal {9) holds for some ¢=0 and k' =0 . As (8) holds, there exist
1y, k=10, such that

iy (275 o Tl 2 T3S € e (D0 woa Tmo1 5 )
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We choose m such that 0 <m <2, T=0, 2m<1; <k and

jrf.[f, 2 (T1s vovs Tt 3 1), B2m (F1s oes Tna 3 A( D)) At <m0 (1m

We define the set
N=ixeC([T...2)LR) : x()=0 forte[T, T) and

¢'|||,'I' {IH vy Imel o L:l < X(f) = lZIZ'.'-'r'n_r I TR o L_]' fort = 'I.'.:'__
and the mapping S : X—C{[T.; , «),K) by the formula

0 Tyt T

Sun = { 1 81 Bea -
L_ 1.-"I:{5|)IT 'Ir 1-"F..-|'I5-n-|]f111+LT{H1E{5}=K{ﬁ(E,Hf5}}}J dsidsq. dspa..dspdsy, 12T, (11}

It is standard to verify that all conditions of the Schauder-Tychonoff fixed point
theorem are fullfilled and therefore there exists x = X such that x(t) = Sx(t), Differentiating this
integral equation we obtain that x(t) is a solution of equation (1) degree (n-1) with property
(P1), This completes the proof.

Theorem 3. Let the condition (8) holds. Then equation (1) has a nonoscillatory
solution x(t) degree (n-1) with property (P1) if and only if (9) holds for some constants ¢=0)
and k0.

Proof. Theorem 3 follows from Theorem | and Theorem 2.

Remark 2. Theoremns generalize some resulls from the paper [1]. Exactly if n=2 we
abtain Theorem 5 from the paper [1]. If Ait,x(t)) = hy(t) we oblain Theorems 1,2,3 from the
paper [2] in the special case o{t)=t, m = 1.
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