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TOPOLOGIES COMPATIBLE
WITH THE CONNECTIVITY IN NETWORKS
Gabriela CRISTESCU

Ahstract. Tna Ze-network over an g-network in a totally bounded metrne
space the topological property of connectivity by means of arcs is described. A
neceessary and sufficient condition for the existence of a topology on the 2e-
petwork  such as the comnectivity in topology should be equivalent with the
connectivity by means of arcs 13 proved, Many more examples of connectivities
taken from 20 and 3D image analysis are studied according to the possibility
of deriving them from a topology.

Keywords, v-connectivity, topology compatible with the
v=connectivity.
1. Introduction.

In 1970, F.Wyse''? | after the development of the main metric concepls
used in image analysis, the problem of defining a topology on 7% in which the
notion of connectivity reduces to the concept of 4-gonnectivity induced by the
distance di(x.y) =[x -y1| + %2 ¥z |, forx (%1,%2) cZ’ and v=(yi,¥2) 7, was
discussed for the first time. This problem was solved by F Wyse'? and A
Rosenfeld® for the distance d, and it was discussed for the case of other types
of conmectivities related to various tessallations by J.M.Chassery and
M.I.Chenin'"! , J.M.Chassery'™/, A. Rosenfeld™ for the 2D image analysis.
Various integer approximations of the Euclidean distance in 21 and 3D are
ellaborated -+ > ' together with the topological concepts accompaning them (103
but the problem of the existence of a topology in which the notion of connectivity
reduces to the concept of connectivity by means of arcs has not been solved. A
descriptive approach for the case of 7' together with various tessallations was
developped "'

The aim of the present study is to investigate the existence and the number
of the topologies having this type of property for the case of the g-networks in
totally bounded metric spaces. Usimg the same ideas like in .M .Chassery and
M I Chenin®. a necessary and sufticient condition for a topology to generate a
commectivity equivalent to the connectivity by means of arcs is derived.
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2. Connectivity by means of arcs in networks

Let (X.d) be a metric space and A — X a nonempty subset of X admitting
a finite s-network in X, for & > 0. In order to construct the support of the
mvestigations that are necessary for the accomplishment of the purposes of this
paper the following basic results will be used:

Lemma 2.1.'7" Let 4 be a set in the metric space X. If there is a
finite e-network for A in X them there is in 4 a finite 2e-network for A.

Theorem 2.2. % Let X o metric space and a sel A = X The necessary
condition for A to be relatively compact s that for every &= (} there is
in X a finite enetwork for A I X is complete then the condition iy also
sufficient,

The hypothesis of the lemma 2.1. and of the theorem 2.2. are always fulfilled in
the case when A is a rectangle together with its interior (for the 2D-images) or a
parallelepiped toghether with its interior (in the case of’ 3D-scenes).

Let then be (X.d) a totally bounded metric space and for a number =0
lat E' be a finite s-network over X. If E is the 3g-network over E° that
exists according to the lemma 2.1, , then

(2.1) V(x)={y |y e E, diy.x) = 2e}
is denoted for every x € E and
(2.2) V ={Vix)|xeE}

The set } has the following properties:

Proposition 2.3, a) xebx) for every x c 0 b) 2 scard Vix) < + =«
for every xel; ) x Vvl i ¥ e Vi),

The proof is similar to that of the Z’-case",

All over this paper the following condition will be supposed o be fulfilled
in addition:
(2.3) bix) = Frw iff x = v

In the 2D-case both 4-neighbourhoods defined by the distance d; and the
8-neighbourhoods defined by the distance ©(X.¥) = max { | X1 -y | | X2 = ¥z {) are
satisfying (2.3). The above mentioned properties are also fulfilled in the case of

the triangular tessallations ' and in the 2e-networks determined by the
hexagonal and octagonal distances %% '

Definition 2.1. Let x and v be two points of £ A v-path from x o ¥
is a swuccesion of points from F, X =Xp, X5 Xz, 00 X =V, such that

X, € Viki;) forevery i=1 2 ..n

Definition 2.2. The points x and y from a set Sl are said to he
v-connected if there is a v-path from x to y completely comtained in 5,
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Property 24, The relmtion of "v-connectivity” in & in an eguivalence
in §.

Definition 2.3. An eguivalence class with respect to the relation of
“vecommectivity” in S ix said 1o he a veconnecied component of N IF S
has an unigue v-connected component then N is said to be v-connecied .

A theory of arcs and curves becomes possible now, but 1t 1s very complex
even in the 3D-case "', and it is not the subject of this study.

Property 2.5. The sets & and /x} are v-conmected, for every xekb
Property 2.6, /x v} is v-connected iff either x =Py or yelixl

Property 2.7. Forevery xcb, Vix) is v-comnected,

Property 2.8. [f 4 and B are two v-connected components with a
nonempty intersection then A 8 is a v-connected component.

The proofs are similar to the Z*-case'',

Remark 2.1. All the results from this section and from the next one can
be obtained more generally, if, for a certain tessallation, V(x) 1s defined as a set
verifying as axioms the properties included in the proposition 2.3 and the
condition (2.3). In this paper the particular case of a 2s-network over an &-
network in a totally bounded metric space is prefered because this is the
environment of the field of the image analysis we are dealing with. For the case of

2D-images these results are wellknown ',

In what follows, two additional conditions will be supposed to be satisfied
by the v-connectivity:

{2.4) £ is v-connected:;

(2.5) For every x e [0 the set E-Vix) has a finile number of  v-
conrected components.

3. Topologies compatible with the v-connectivity.

Let o beatopology on E. A set AcE is said to be connected in o if
there is not a partition of A consisting from two open subsets,

Definition 3.1. The topology o is said to be compatible with the v-
connectivity if the v-connected subsets in F are the conmected subsets in the
sense of the topology o
Now. ¢ 1s supposed to be a topology compatible with the v-connectivity m E
and the properties of such a topology are investigated. For every point x e I the
set D(x) is defined as the intersection of all the open sets  (in &) containing x.

Property 3.1. For every x € £, the following properties are frue:

al Dix) < VFix); &) Ix) s open.



216

Proof. a) For x e E theset P=[E-V{x)] v {x} 15 considered.
From the property 2.5 it follows that {x} 15 v-connected. (2.5) umplies that

E - V(x} has a finite number of v-connected components. Due to the hypothesis
of the compatibility of the topology o with the v-connectivity, the v-connected
components are also connected in the topology . Therefore, every v-connected
component is closed in the topology induced by & on [E - Vix)] W {x}. The set
E - V(x) 15 a finite union of closed sets in P, therefore it is closed and its
complement in P, {x}, is openin P. It means that there is an openset D in ©
such that {x} =D N [[E - V(x)] - {x}]. involving that D < Vix) and, due to
the definition of D{x), Di{x) < V(x).

by If D=Dix) then Di{x) is open Contrariwise there 1s
a point v & D-D{x) and an open set D suchthat x e D” and ¥ ¢ D°. The set
DAD isopen If DD = DNx) then D(x) is open. If this is not true then
afler a finite number of the iterattions of the process just described an imtersection
equal to DYx) is obtaned and therefore IXx) 1s open. L

Property 3.2, The sei {1 [x e B} v & is a basis for the topology o

Proof. Let D e o It is obvious that there are only the following two
possibilities for D: D =@ or D= || D(x). Therefore. {IXx)|x e E} i 13

a basis for the topology . _

Property 3.3. If x €k and y c F then x = Dfy) iff Dix} <Dyl

The proof is evident due to the definition of D(x).

Property 3.4. If x e F and v € E then the following propositions are
equivalent: a) {x.y} is a connected set in o, b) fxy! is a  v-conpected
companent, ¢y xe¥bp:; d) v € Fixjr e) x e ) or y € Dix); £) Dix) = DY)
or Iy o Dix).

The proof of the property 3.4 s similar to that of its correspondent in the
plane'"" . The following properties are also similar to their plane particular case ()

Property 3.5. [f x e F and y c I then:

al Ix) Dy iff x=w
b) If x e Df and x Zy then y & D(x).

Property 3.6. If x £ F then for every v  Dix) from zel(x)-Vy) it
Tollows that z € D).

The results will be obtained in what follows are stronger then the similar
ones in the plane''’, leading to a necessary and sufficient condition for the
existence of a topology in which the connectivity property 15 equivalent to the v-
connectivity,

Lemma 3.7. Let x ¢ K and y € I such that Vi) 2 Vi) isa v
connected set, Then
(3.1) Vix) = fxd Vi -Vadf o U Vi) - Mzl

T xi- iy

Proof, Ttis easy to sce that the sets {x,y}, V(x) - V(y) and
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I [Vix)-Viz)l-{y} are a partition of the neighbourhood  V{x). |

RV VYD

Lemma 3.8. fetx € E and y e E such thar the set Vix) N V(y) is v-
connected iff either Vix) @ Viy) — € or Vix) m Vvl s singleton or Fix) m
Vi) - {xt Then
(3.2) Vi = fxy} Vi) - Vv

Proof, If the hypothesis is fulfilled then either V{(x)"V(y)-& ot
Vix)mVi{y) is singleton or VixyWViy{nyl, Indeed, if V{xWViy) 1Is
supposed to be both nonempty and not singleton and if a point ze V{x)V(y),

z#x, 7+, is supposed to exist then zeV(x) and z € V(y), therefore 2, x. ¥
is a path from =z to v. This implies that V{(x) ™ V{y) is a v-connected set,
contradiction with the hypothesis. Tn this case, the sets {x,¥} and V{x}-V{y)
from a partition of V(x}. U

Theorem 3.9. The hypothests that for every iwo pomnis x ¢ I and yck
the set Vix) ~ Vvl is v-connected {ff either Vix) A V) & or Vix) 0 V)
is singleton or Vix) 2 Viy) = fxp} is assumed to be valid Then if o s a
topology compatible with the v-connectivily then it follows that either
Diz) = {z} or Dfz)  Viz) forevery z €L

Proof. The condition D{z) = {z} is supposed. From the property 3.1 it
follows that Di{z) = V(z). let v e [Xz) with y=z The property 3.6
implies  that V(z)-V(y} = Di{z). and the lemma 3.8 implies that
Viz)={y,z}[V(z) - ¥(y)]. Then Iy, zd<D(z) and the inclusion

Viz) - V(v) = Diz) imvolves that V(z) < INz). Therefore V(z) = D{z). [
Theorem 3.10. For every x € & and y € E the set Vix} n V(y) s
supposed to he v-connected, Then if o is a topology compatible with the v-
connectivity then it follows that either 1)z) = {z} or Dfz)  Fiz) forevery
ze k.
Proof. The same method as that used for the proof of the theorem 3.9
leads to the result, but instead of the lemma 3.8, the lemma 3.7 isused. [

Theorem 3.11. The necessary and sufficient condition for the existence
of @ topology compatible with the v-connectivily in L is that the set

Vix) = ¥ is v-connected iff gither Vix) Vv = & or Vi) n ¥y I
singleton or Vix AV {xp

Proof. As a consequence of the theorems 3.9 and 3.10 it follows that
gither D(x) = {x} or D(x) = V(x) for every x  E. If o is the discrete
topology then IXx)={x} forevery x e E. Lel ¥ € V(x), v=x Then {xy} 18
v-comnected. But from D(y)={y} it follows that {xy} isnot connected in o,
Therefore. o is not the discrete topology. so there is x € E such that
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Di{x) = ¥(x). Letnow v € V(x). y#x. Then v € D(x) and v # x. According
to the property 3.5 it follows that x # [Xy). But the proposition 3.3 implies
x€V(y) and therefore IXNy)+= V(v), so Di¥)= |¥}.

Suppose now that there 15 a poinl teE such that VixW{O—={vy.z}, with
zex and z=y, z=t, y=2x and {v.z} is v-connected. Bul D{z)= {z} and
D{v) = {v}. involving that {v.z} is not connected in ¢, being the union of two
open separated sets.

For the converse, the hypothesis that for every x e & and v € [ the set
Vi{x)mV(v) 13 v-connected ift etther Vi(x) m Viv) =& or Vix) ™ V(y) 1s
singleton or V(x)~V(y) = {x.¥} is supposed. A topology compatible with the

v-connectivity, o, will be constructed. From the theorem 3.9 it follows that for
every point x € E the condition D{x={x} or D(x) = V(x) takes place and,
according to the previous remark, there 1s x € I such that D(x) = Vix). The
topology o will be constructed by defining the sets D(x) for every x € E.

Let a point x € E. For this point, let Di{x) = V(x). Then, according to
the previous remark, for every ¥ € V(x)- {x} the condition D(y)= [y}
takes place. Let M=lzeE-{x} | V(z)nV(x) is either singleton or is not
v-connected; .

Forevery z € Ay, D(z) = V(z) is taken. Then for every ( & V(z) it follows that
Dit) = It} Let

A =leebk-A|dyv e A, Viz)n Viy) 15 etther
singleton or is not v-connected 1§,

For every z € Az, D(z) = V(z) 1s taken, Then for every t € V(z) it follows that
D{t) = {t}. The method will be continued until, for every x € E, the smallest
open sel Dix) will be defined. The topology o is now that hawing the set

(Di{x) | x & E} as a base. Its compatibility with the v-comnectivity will be
proved. Evident, E = {IXx) | x € E}.

Let M be a comnected set m o, let x e M and let Mi(x) be the v-connected
compeonent containing x, Then ye M{x) implies Di{y)"McM(x) and, similarly,
veM-M(x) mmplies D(y) ~ (M-M(x)) = M-M(x), therefore both M and
M-M(x) are open sets in M. A consequence of the connectivity of M is that
M-M(x) must be empty, therefore M=M(x) and this means that M 1s

v-cohnected.

Conversely, let P be a v-connected set in E and suppose that P=AUB, with A
—FE, BcF and AnB=2Let acA and b B and let a=ga, a;, ..., a,=b
a v-path in P. Then there 1s a number k such that a, € A and a, € B. Then
either aelap) or apqeDiag), as a consequence of the property 3.4, This
means that either A or B cannot be open, therefore P is connected in o.—
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From the proof of the theorem 3.11 more properties having a very
important and practical content can be obtained.

Corollary 3.12. The discrete topology i £ 15 not compatible with the v-
connectivity.

Corollary 3.13, I o is a wopology in E that is compatible with the v-
conpectivity than there is x € IT having the property that 1x) - V{x).

Corollary 3.14. If o is a topology compatible with the v-connectivity in
E and if for x e E the condition [Xx} Vix) takes place than for every
velbix)-fxt i follows that Diyv)=[v}.

Corollary 3.15. The topology o constructed in the proof of the theorem
3.11 is the unique type of topology compatible with the v-connectivity in E.

Proof. If the existence of a topology o of another type is supposed then
in that topology the following condition is valid: there is a nalural number k
such that D(z)=V(z) for a point z € Ay, but D{t)=V(t) for a point t € V(z).
But this is a contradiction with the corollary 3.14. [

Remark 3.1. In the proofs of the theorems from this paragraph the
metrical properties of the 2e-network have not been used. Only the results of the
previous paragraph are involved, but, according to the remark 2.1, they are valid
in more general conditions, Therefore, all the results from 3 are true for every
tessallation over a set X such that it is possible to associate to every point x of
the network that is obtained afier the tessallation a set  V(x) sattisfying the
conditions of the proposition 2.3 together with (2.3).

4. Applications for 2D and 3D tessallations
4.A. The case of the triangular tessallation in 2D

For the case in which the plane R* is covered by a pavement consisting
of equilateral triangles, every triangle being represented by its center of grawvity,
E is the collection of these centers (fig.4.1). Then the set V(x)} - {x,a, b, ¢} for
x & E, defined like in the figure 4.1 sattisfies the proposition 2.3 and (2.3). So,
the conditions of the lemma 3.8 and the theorem 3.9 are fulfilled and then,
according to the theorem 3.11, there is a topology o compatible with the
V-cOnnectvity,

™ ae ™ -
}l".' N L ] L]

he ce . Fig. 4.1.

F L ] -1
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This topology 1s constructed like in the proof of the theorem 311 In fact,
there are two lopologies of this type;
1) The topology o defined by:
D(x)=V(x) if WV(x) has the configuration of V(x) from the fig.4.1;
Dix) = {x} contrariwise,
2) the topology o: defined by:
D(xE=V(x) if V(x) has the configuration of V(b) from the fig.4.1;
Dix) = {x} contrariwise.
These resulls was obtamed by J.M Chassery and M.IChenin'"’ and
T M Chassery ',
4.B. The case of the tetrahedral 3D tessallation
In the case of three dimensions, when the space R’ is divided into regular
tetrahedrons, the set E consists from the centers of gravity of these tetrahedrons.,

The conditions of the lemma 3.8 and of the theorem 3.9 are satisfied, therefore,
according to the theorem 3.11, there is a topology o compatible with the

v-connectivity in E. In fact, in this case there are also two topologies, described
in a similar way as in the above mentioned 2D case.

4.C. The case of the city-block distance in 2D

In R® the 1/2-net Z° is considered, being determined by the city-
block di{a.by=|xau] + [ya-yu|, where a=(x. ¥.) € RI and b=(x, vi) € R
Therefore, Z* becomes an 1-net over Z°, according to the lemma 2.1 In this
case, for every a e Z%, V(aEVi(a){(x-1, va), (xat L. ¥a), (X, ¥arl) (Xa, Yol 1),
al. The hypothesis of the lemma 3.8 and the theorem 3.9 are fulfilled and then
the process described in the proof of the theorem 3.11 leads to the two
topologies discussed by A.Rosenfeld ' and F.Wyse khex:

4.D). The case of the city-block distance in 3D

ﬂ In the same way as in the 2D case, the set # iaa 1/2-net over
R* and an 1-net over Z°, determined by the city-block distance
di(ab) = bxyxe] + lyarys] 1 [ze-zels where a=(xe, Yo, %) € R
and
b=(xu, Yo, Zn) € R,

This case satisfies the theorem 3.11, generating two topologies o, and o
that are compatible with the v-connectivity. In this case V(al={a, (X1, ¥a, 7).
(11, Voo Zad, (Xao VooLlu 7). (Xe, ¥e' Lo Z0) (X Yoo Za-1), (Baw ¥ao ZaF 1)} Then the
basis of the topology &, consists of the sets D(x), x = (ijk) € Z", defined by
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R
1{x} if 1+j+k 1s odd

and the basis of the topology a> 1s defined by

J’ fx} if i+j+k iseven

(4.2) Dix} = |Vix) if i+jtk is odd’

4,E. The case of max, hexagonal and octagonal distances in 2D and
their extensions in 3D

Both in the case of the 8-connecctivity defined by the distance cfab) -
max §|xa-Xp|, [Ya-¥u|}, for a=(x., y.) € R® and b=(xp.v) € R® and in the case of
hexagonal distances ' and octagonal distances ' *' | the hypothesis of the
theorem 3.9 is not satisfied by sets having special configurations. Therefore,
according to the theorems 3.10 and 3.11, in these cases there is not a topology
compatible with the v-conmectivity, The same result is also valid for the
connectivity defined in Z° by means of the extensions in 3D of the above
mentioned distances. This result was obtained by TM Chassery ! for the case of
the 8-connectivity.

A discussion on these special configurations will be developed m what
follows,

If the totally bounded metric spaces X reduces to the case of the 2D unit
ball determined by the chessboard distance ¢ in the plane then, for ¢ = 1/2 one
can consider

E= {{[}!{} }: r' | lﬂ}'l(_ I -._]- }: {.'1 3 1 .}:(ﬂ!l ].—.—I:D-.-_]- },{17':_:']..,(]. s 1 }:{1 W I }}=v{{ﬂ7ﬂ.}} Dﬂnﬂtiﬂg
these points by letters, one has

pe fe om
he as (e Fig 42
i be ce

and the result of I M-Chassery ™ is the following.

Theorem 4.1, ‘2 There are jour digital topologies in E that are
compatible with the v-connectivity,

These topologics are generated by the following basis.
(o1) D{a)={a}.D(b) = {abe.dh.i}, D(c) = {acd}, D(d) - {a,d]

D(e) — {a,d.e}, D(f) = {ad.e.fgh}, D(g) = {a,gh}, D(h} = {ah}
D{-l} : {H‘:h-!]}
(2) D(a)= {abedefghil Db)={becdhi} Dic)-{cd}, Did) = id}



D(e)={e.d} . Dif}={d.e.fg.h}, D(g) = {g,h}, D(h) = {h}. D) = {h.i}
The other two topologies are obtained applying a /2 -rotation on o
and ., therefore:

(o3) D(a)= {a}, D(b) = {a,b}, D(c) = {ab.c}, D(d) = {ab.c.de.f}
Die) = {ae.f}, D(f) = {af}, D(g) = {a.fg}, D(b) = {a,bfgh.}
Dii) = {a.b.i]

() Dia){abedelghl Db)= {b}, Xc)= {b.c}. D{d) = {bec.d.e.l}
D(e)={e.f}. D(D={M, D(g) = {f.g}, D(h) = {ab.Lehi}. D)= {ba}.

According to the theorems 3.10 and 3.11 it is evident that for a set in
77 containing a subset similar to that one presented

& L ] L ] L]
. L] - . Fipg. 43
el L] » L

in the fig 4.3 there is not a topology compatible with the v-connectivity. This is a
stronger result that the conclusion oblained by J.M.Chassery 2 The extension
for the case of the 3D cube or more is now natural.

In the case of the hexagonal distance''"!

(4.3) de(x.y) = max { [i-h|, (1/2)(}i-hl-(i-h)) - ([i12] - [W2]) ke
(1/2)(ji=h| + G-+ ([02] - [h2]+K}

for x=1(1J) € 7* and v = (hk) e 7 where [.] means the mteger part. For
£ (therefore 2622), the ball V. (x, 2e) in Z° has either the configuration from

the figure 4.4 or that from the figure 4 54Y;
. . .
* . . Fig. 44
.
s e 0w Fig. 4.5
L] L ] ¥

Therefore, the existence of a topology compatible with the v-connectivity
on a hexagon as in the figure 4.6 will be discussed,
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Theorem 4.2 If E = Vifa) for a point acZ, then there are four
topaloges compatible with the v-commectivity in I

Proof. Tet L = {abcdefe}l asin the figure 4.6, From the identity
between the v-connectivity determined by di and the connectivity in the topology
we are looking for the following properties are obvious:

(4.4) {xy¥} connected <> xeD(y) or yeD(x),

(4.5) xeD(y) = D(x)=D(y);

(46) x and y are 6-neighbours < {x,¥] 15 comected < Dix)cINyv) or
D(y)<Dix);

(4.7y x and v are not G-neighbows < xeD(y) or yeD(x), where xeE, yeE,

The existence of a topology compatible with the wv-connectivity is
supposed. From (4.7) it follows that in this topology the following relations are
true:

(4.8) {edjcC INb)~C Dig).

(4.9) {e.f}<C D(b}C Dic);

(4.10} {£.2}=C D(e)"C D(d),

where C A means the complement of the set A Because of the v-connectivity of
fd.e}.(4.6) implies that Did)}=Die) or Die)cDid).

Suppose that DNd)cD{e). Then

(4.9) celde) }-_:, cebDid) | ]._} Dyd)=Dic)
Didy=Dic) c, d ﬁ-nmg]'lbuurﬁf celNd)

d2l{f) }_} Di{e)=Dif) l_:- Dific—Dve)
D(d)eDie)| ¢ f 6-neighbours|  esD(N)

}{4_11]

(4.10) } (4.12)

{4.9) —seeDic) “: eal(d) ]_} DdicDie)
(4.11)=D{dp=Dicy] e d ﬁ—ncighbuursj eeDid)

{4.8) —=d«Dib) 1_:_ DichzDNb) i D(b)=Di{c)
(4.11)=D(d)=Dic)| ~ b, ¢ 6-neighbours|  ceDi(b)

}{4.13}

}{4_14)
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(4.10) —sceDig) 1:, II{EJH:D{F:} }_} Dflﬁ]f:l_'l{g}} @.15)
(4. 14)—=Td)_Tc) b, g G-neighbours welib)

(4.9) =I#D(bh) =, DIECDN) _, Dih=D(g)| (4.16)
#15=Db)cNg)] g 6-neighbours|  geDin) |

The consequence of all these 1s that: D{b) = {b,s}, D(¢) = {b.c.d.e!

Dd) = {d,e}. D{e) = {d.efs} D(f)= {f o}, Dig) = {b.fr.e} and the siluation of
the point a remains to be analysed. Suppose that a=D(b). Then from (4.14) it
follows that aeTXN¢) and (4.15) implies that aslXg). In these conditions
a#[)(d) is supposed. Then D(d)={d} and the sets {d} and {a.g} are a partition of
fa,d.g}. But this set is v-connected and therefore it must be connected in the
topology. It follows that acD(d) and (4.13) implies that acD{e). The proof of
asD(f) 1s similar and all these results mean that aeD(x) for every xeE. Therefore
Dia) = m{D(x) | xeE} = {a}. The first topology &, was now generated by means
of its basis:

D(a) = {a}, D(b} = {a,b}, D(c) = {a.b,c.d}, D(d) = {ad}

Die) = {ad.e.f}, INM = {a.f), D{g) - {abfg}.

Now agD(b) is supposed. If a=D{d) or a=D(f), an arpument similar to
the previous one implies that asD(b). Bul this s a contradiction. Therefore
agD{d) and agDif). If acD(c) then the sets D(f)={f} and {a.clcD{c) are a
partition of {a,c.f}. But {a.c.f} is v-connected and, therefore, it is also connected
i the topology, which is a contradiction. Therefore agD{c). A similar argument
15 used to prove that agD{g) and ag(e). Then, the v-connectivity of E implies
that D{a)=E. The topology &: having the basis:

D(a) =E, Db) = {b}, IX¢) = {b,c.d}. D(d) = {d}
D(e) = {d.c.f}, IXD = {f}. D(g) = {f.g.b}
15 obtamed.

Now, if D{e)=Did) 1s supposed, by the similar prool the topology a3 and
a4 are obtamed as follows:

(2} Dia)= {a}. D{(b)= {a.b.c.g}, Nc) = {a.c}. D(d) = {a,c.de}
Die) = {a.e}, D(f} = {a.c.fe}, D(g) = {a.g};

(@4) D{a)=E.D(b)= {b,c.g}, D(c) = {c}, D{d) = {c.d.e}
Die) = {e}. Dif) = {e.feg}, D{g) = {g}.”

The following theorem identifies the minimum set having the properiy thal
there is not a topology compatible with the v-connectivity defined by means of
the distance d..
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Theorem 4.3 I acZ’ and beZ’ such thai acVyb), beVyfa) and if
E=Vsfa) LV5b) then there is not a topology in If which is compatible with the

v-conRectivity.
Proof In this case E is one of the sets:
{I} & » -

* e -
o he o
(I1) = . .
™ qe b= " Fig_ 47
a o ]
(111) :
. - be =
- ae - 2
.

{]v} L=] o i
. e "
™ ae -

Every set satisfies the theorem 3.10 and 3.11 and the expected
negative result is obvious.L

Corollary 4.4 There is not a topology in Z° which is compatible
with the v-connectivity induced by dg
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