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Abstract. The nonclassical transtormation is emploved to denve the
similarity differential equation

| L+ [+ 7+ P -2y =0, which governs the {luid low past a

moving wedge with included angle w3 . and the parameter 4 is the ratio of

boundary velocity to the free stream velocity. In this research the behavior of
the solution as 4 - -1 in inveshgated.

L. INTRODUCTION

The standard Falkner-Skan equation is given by

£+ Fn) () +BL-FF () =0 (1)
with mnitial and boundary conditions

f(M =y, f(0)=-4, and ['(=)=1 (2)
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This equation is related to the flow of an incompressible Huid over a moving
wedee whose included angle is mff . The function /(n) is the nondimensional

stream lunction,n is the similarity ordinate and A is the ratio of boundary velocity to
the free stream velocity. This equation received an mtensive research by many authors,

In [1]. Yang and Chien establish an analytic solution when A =0 and

= -1 using confluent hypergeometric functions, and obtain two types of unique
analytic solution. The two types obtained are due to the different choice of the mitial

condition {07 . Hasting [2]. studied the case A= and v -0 and proved that
there exists one solution such that /7 (0)<0 . Recently Riley and Weidman [3]
studied the case v -0. They emploved numerical caleulations to study the
existence and nonuniqueness of solution for || = 1 over a range of positive and
negalive values of A. Their results indicate that for 1 < =0 | two solutions exist

for A less than a critical value A (B) and no solution exists above 4 (). They

also observe that triple solutions exists for 0 < 0,14

In the present article we use the modified similarity transformation presented in
[4]. to derive the similanity differential equation that governs the flow. This will be
accomplished in section two. In section three, discussion of the results restricted (o the

case v =10 will be presented.

2. MATHEMATICAL FORMULATION

The dimensional Navier-Stokes equations that deseribe the flow phenomenon

are:
7 aFT o 2
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subject to the boundary conditions

wix,0)=-AU(x), vix,0)=0 andas y-=, u-1{ (5)

where u is the component of the velocity in the direction of the fluid Mlow, and v is the
velocity in the direction normal to w. The constant v is the kinematic viscosity and

(F{x)=1/_x™, where m is related to the constant [ by the relation

2 m
B -

m =1

To make the equations dimensionless, we follow the procedures presented m

[4]. and introduce the dimensionless coordinate n such for A« |

H‘T_I !_l.li-'l_: -1
n=Y¥ e,

2 v

The equation of continuity (4) can be integrated by mtroducing a stream function
Pix.v) given by

= 2 VAl
b (x,0) 'leJIHlII fm)

where [(1) denotes the dimensionless stream function. Thus the velocity

components become

writing down the further terms of equation (3) then after simplification the following
ordinary differential equation will result
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|1 d |+ Bl =f%)=0 (6)
with the boundary conditions
fiB) =0 L) ==Xy fi=)=1 (7)

Note that when A = 0 the problem 1s reduced 1o the standard Falkner-5kan

equation (1) with +y -0 .

J. DISCUSSION OF THE RESLLTS

Note at first that when A --1 one can show with the help of LTlopital's

rule that
bm § (x,p) = p({x) S(0) = pT(x)
A1
[urthermore
. dyr : S
i), = hm —==1{/(x)/(0)=-01/(x)
."'I I I:_I.'H._I
and

4 |_:I_=_; = |I]]1 == Clllll S ':l_-'l:lf.r'}

-

FIR | X

It is known that far away from the boundary layer the velocity component parallel 1o
the stream, U{x), is simply U, therefore, the stream function as well as the velocity
componenis given by the above limits have a full physical meamng.

In the coming discussion we will restrict ourselves 1o the case A- 1.

Therefore, in the neighborhood of A= 1 sayfor A=-11e, where O<eal |

the differential equation (10) could be written as

ef" L B =0 (8)
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The above singular perturbation problem Equation (11} has no boundary layer

when £ - 0. The intensive numerical investigations sugprested that the following
form 1s suitable for the outer solution

finy=f+fe+fe+0() (9)

substituting Fquation {9) in Equation {(8), and equating similar powers of ¢ |, implics
that /; satisfies the differential equation
fofa +B(1-£7)=0 (10)
with the imitial conditions
5(0)=0, f(0)=1, and f(=)=] an

Equation {10) has an exact solution which can be obtamned using the standard
techniques. It can be written as

. i (12)
-

and the first integral of equation (10) gives

14 b 1
=Aexp
1|j’

where £ >0 is chosen such that the imtegral in the right hand side converges, and a
is a constant to be determined. Using the boumdary condition at infinity gives the value

of A=0_ therefore cquation (10) is reduced to jE; (n) -1 with the solution

fi(m)=Bn~=C . Theinitial condition at ) gves the exact solution f,(n) =7 .
Therefore the outer solution is given by
film)=m+0(e) (14)
For the inner solution the following transformation proved to be adequate:
f(n)=n+e*g(&) (15)



where £ = Ll i

E

The function g then satisfies the following differential equation:

g™ +[eE+eglg”+ BI1-(1+eg'¥]=0 (16)

now assuming that

ZER, VEG YO L (17)

and substituting Equation (17} in Equation (16) and equating equal powers of ¢
leads to the following form for the inner solution:

Fin)y=(1+e)n + 0 (&)

Figure | shows the solution curves for Fin} when the two values of £=+£0.02

are used for P =005 and [} - -0,19884 . The last choice refers to the case of

separated flow while the first choice is an arbitrary one. This figure draws a
comparison between the present model given by Equation (4) and the model of Riley

and Weidman [3] given by equation (1) with =0 . Itindicates that for the present

resulls, the solution converges to the asymptotic value (= | faster than the old

model which implies that the boundary layer thickness is over estimated when the old
model is used. However, several numerical experiments with various values of [

indicate that [} plays no significant role when £ 1s very small as shown in figure 2.
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