Dedicated to Professor Ion PAVALOIU on his 60th anniversary

FURTHER SOLUTIONS OF FALKNER-SKAN EQUATION F. M. ALLAN¹

Key words: modified similarity transformation, Falkner-Skan, similarity solution

Abstract. The nonclassical transformation is employed to derive the similarity differential equation

 $|1+\lambda|f'''+ff''+\beta(1-f'^2)=0$, which governs the fluid flow past a

moving wedge with included angle $\pi\beta$, and the parameter λ is the ratio of boundary velocity to the free stream velocity. In this research the behavior of the solution as $\lambda \rightarrow -1$ in investigated.

1. INTRODUCTION

The standard Falkner-Skan equation is given by

$$f'''(\eta) + f(\eta)f''(\eta) + \beta(1 - f'^{2}(\eta)) = 0$$
 (1)

with initial and boundary conditions

$$f(0) = \gamma$$
, $f'(0) = -\lambda$, and $f'(\infty) = 1$ (2)

This research is supported by ISESCO grant Number M/AL/3510/5/2.3.3.2

This equation is related to the flow of an incompressible fluid over a moving wedge whose included angle is $\pi\beta$. The function $f(\eta)$ is the nondimensional stream function, η is the similarity ordinate and λ is the ratio of boundary velocity to the free stream velocity. This equation received an intensive research by many authors. In [1], Yang and Chien establish an analytic solution when $\lambda = 0$ and

 $\beta=-1$ using confluent hypergeometric functions, and obtain two types of unique analytic solution. The two types obtained are due to the different choice of the initial condition f''(0). Hasting [2], studied the case $\lambda=0$ and $\gamma=0$ and proved that there exists one solution such that f''(0)<0. Recently Riley and Weidman [3] studied the case $\gamma=0$. They employed numerical calculations to study the existence and nonuniqueness of solution for $|\beta| \le 1$ over a range of positive and negative values of λ . Their results indicate that for $-1 \le \beta \le 0$, two solutions exist for λ less than a critical value $\lambda_m(\beta)$ and no solution exists above $\lambda_m(\beta)$. They also observe that triple solutions exists for $0 \le \beta \le 0,14$.

In the present article we use the modified similarity transformation presented in [4], to derive the similarity differential equation that governs the flow. This will be accomplished in section two. In section three, discussion of the results restricted to the case $\gamma = 0$ will be presented.

2. MATHEMATICAL FORMULATION

The dimensional Navier-Stokes equations that describe the flow phenomenon are:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = U\frac{\partial U}{\partial x} + v\frac{\partial^2 u}{\partial y^2}$$
 (3)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{4}$$

subject to the boundary conditions

$$u(x,0) = -\lambda U(x)$$
, $v(x,0) = 0$ and as $y \rightarrow \infty$, $u \rightarrow U_{\infty}$ (5)

where u is the component of the velocity in the direction of the fluid flow, and v is the velocity in the direction normal to u. The constant v is the kinematic viscosity and $U(x) = U_m x^m$, where m is related to the constant β by the relation

$$\beta = \frac{2m}{m+1}$$

To make the equations dimensionless, we follow the procedures presented in [4], and introduce the dimensionless coordinate η such for $\lambda \neq -1$

$$\eta = y \sqrt{\frac{m+1}{2} \frac{|1+\lambda| U_{\infty}}{v} x^{m-1}}$$
.

The equation of continuity (4) can be integrated by introducing a stream function $\psi(x,y)$ given by

$$\psi(x,y) = \sqrt{\frac{2}{m+1}} \sqrt{\frac{v \, x \, U_{\infty}}{\mid 1+\lambda \mid}} \, x^{m+1} f(\eta)$$

where $f(\eta)$ denotes the dimensionless stream function. Thus the velocity components become

$$u = \frac{\partial \Psi}{\partial y} = U_{\infty} f^{\gamma}(\eta) ,$$

$$v = -\frac{\partial \psi}{\partial x} = -\sqrt{\frac{m+1}{2}} \sqrt{U_{\infty} v \frac{x^{m-1}}{|1+\lambda|}} \left\{ f + \frac{m-1}{m+1} \eta f' \right\}$$

writing down the further terms of equation (3) then after simplification the following ordinary differential equation will result

$$|1 + \lambda| f''' + ff'' + \beta (1 + f'^2) = 0$$
 (6)

with the boundary conditions

$$f(0) = 0$$
, $f'(0) = -\lambda$, $f'(\infty) = 1$ (7)

Note that when $\lambda = 0$, the problem is reduced to the standard Falkner-Skan equation (1) with $\gamma = 0$.

3. DISCUSSION OF THE RESULTS

Note at first that when $\lambda = -1$ one can show with the help of L'Hopital's rule that

$$\lim_{\lambda \to 1} \psi(x,y) = yU(x)f'(0) = yU(x)$$

furthermore

$$u|_{\lambda=-1} = \lim_{\lambda \to -1} \frac{\partial \psi}{\partial \nu} = U(x) f'(0) = U(x)$$

and

$$v|_{\lambda=-1} = \lim_{\lambda \to 1} -\frac{\partial \psi}{\partial x} = -y U'(x)$$

It is known that far away from the boundary layer the velocity component parallel to the stream, U(x), is simply $U_{...}$, therefore, the stream function as well as the velocity components given by the above limits have a full physical meaning.

In the coming discussion we will restrict ourselves to the case $\lambda \rightarrow -1$.

Therefore, in the neighborhood of $\lambda = -1$ say for $\lambda = -1 \pm \epsilon$, where $0 \le \epsilon \le 1$, the differential equation (10) could be written as

$$\varepsilon f'''' + f f''' + \beta (1 - f'^2) = 0$$
 (8)

The above singular perturbation problem Equation (11) has no boundary layer when $\epsilon = 0$. The intensive numerical investigations suggested that the following form is suitable for the outer solution

$$f(\eta) = f_0 + f_1 \varepsilon + f_2 \varepsilon^2 + 0 (\varepsilon^3)$$
(9)

substituting Equation (9) in Equation (8), and equating similar powers of ε , implies that f_{θ} satisfies the differential equation

$$f_0 f_0^{\prime\prime} + \beta \left(1 - f_0^{\prime 2}\right) = 0$$
 (10)

with the initial conditions

$$f_0(0) = 0$$
, $f_0'(0) = 1$, and $f_0'(\infty) = 1$ (11)

Equation (10) has an exact solution which can be obtained using the standard techniques. It can be written as

$$\frac{f_0''}{1 - f_0'^2} = \frac{-\beta}{f_0} \tag{12}$$

and the first integral of equation (10) gives

$$\frac{1 - f_0'}{1 + f_0'} = A \exp\left(\int_{\varepsilon}^{\eta} \frac{\beta}{f_0(\zeta)} d(\zeta)\right)$$

where $\varepsilon > 0$ is chosen such that the integral in the right hand side converges, and a is a constant to be determined. Using the boundary condition at infinity gives the value of A=0, therefore equation (10) is reduced to $f_0'(\eta) = 1$ with the solution $f_0(\eta) = B \eta + C$. The initial condition at 0 gives the exact solution $f_0(\eta) = \eta$.

Therefore the outer solution is given by

$$f_o(\eta) = \eta + O(\varepsilon) \tag{14}$$

For the inner solution the following transformation proved to be adequate:

$$f(\eta) = \eta + \varepsilon^2 g(\xi) \tag{15}$$

where $\xi = \frac{\eta}{\epsilon}$.

The function g then satisfies the following differential equation:

$$g''' + [\epsilon \xi + \epsilon^2 g] g'' + \beta [1 - (1 + \epsilon g')^2] = 0$$
 (16)

now assuming that

$$g = g_0 + \varepsilon g_1 + \varepsilon^2 g_2 + \dots \tag{17}$$

and substituting Equation (17) in Equation (16) and equating equal powers of ϵ leads to the following form for the inner solution:

$$f_i(\eta) = (1 + \varepsilon) \eta + 0 (\varepsilon^3)$$

Figure 1 shows the solution curves for $f'(\eta)$ when the two values of $\varepsilon = \pm 0.02$ are used for $\beta = 0.05$ and $\beta = -0.19884$. The last choice refers to the case of separated flow while the first choice is an arbitrary one. This figure draws a comparison between the present model given by Equation (4) and the model of Riley and Weidman [3] given by equation (1) with $\gamma = 0$. It indicates that for the present results, the solution converges to the asymptotic value f' = 1 faster than the old model which implies that the boundary layer thickness is over estimated when the old model is used. However, several numerical experiments with various values of β indicate that β plays no significant role when ε is very small as shown in figure 2.

Figure 1: The velocity component $f'(\eta)$ for (a) $\beta = 0.05$ and (b) $\beta = -0.19884$

REFERENCES

- [1] Hasting, S. P., Reversed Flow solutions of The Falkner-Skan Equation, SIAM J. Appl. Math. 22, (1972), pp. 329-334
- [2] Yang, H.T. and Chien, L.C., Analytic solutions of the Falkner-Skan Equation When $\beta = -1$ and $\gamma = 0$, SIAM J. Appl. Math., 29, (1975), pp. 558-569
- [3] Riley, N. and Weidman, P. D., Multiple Solutions of the Falkner-Skan Equation for Flow Past a Stretching Boundary, SIAM J. Appl. Math., 49, (1989), pp.1350-1358
- [4] Allan, F. M., On the Similarity Solutions of the Boundary Layer Problem Over a Moving Surfaces, Appl. Math. Letters

Received 15, 06, 1999

Department of Mathematics and Computer Science Birzeit University, PO Box 14, Birzeit Palestine