Dedicated to Professor Ion PAVALOIU on his 60th anniversary

FIXED POINT THEOREMS FOR NONEXPANSIVE OPERATORS ON NONCONVEX SETS

Vasile BERINDE

Abstract. Two theorems on the existence of fixed points of nonexpansive selfmappings of a nonconvex set are proved. The results in the present paper extend the corresponding theorems in [3].

Let E be a Banach space, C a subset of E and T a selfoperator of C. It is well-known (see [2], for example) that in an uniformly convex Banach space every nonexpansive operator T of a closed bounded convex subset C of E has at least one fixed point in C.

(We recall that $T: C \to C$ is nonexpansive if for all x,y in $C \| Tx - Ty \| \le \|x - y\|$)

Dotson [3] proved similar results for (weakly) compact subsets S of a Banach space, when the convexity of S is replaced by some other properties, described by means of a family of functions from [0,1] into S. The aim of this paper is to extend the Dotson's results, by considering a generalized contractive condition instead of that given in [3].

DEFINITION 1, ([1], [5]). A function $\phi: \mathbb{R}_+ \to \mathbb{R}_-$ is called **comparison** function if

- φ is monotone increasing;
- (ii) the sequence $\{\varphi^n(r)\}_{n\geq 0}$ converges to 0, for each $r\in \mathbb{R}_+$

 (ϕ^n) stands for the nth iterate of ϕ).

EXAMPLE 1. If $0 \le t \le 1$, then $\varphi_t(r) = t \cdot r$, for each $r \in \mathbb{R}_+$, is a typical comparison function. There exist non-continuous and nonlinear comparison functions (see [1]).

DEFINITION 2. Let S be a subset of the Banach space E, and let $F = \{f_{\alpha}\}_{\alpha \in S}$ be a family of functions from [0,1] into S, having the property that for each $\alpha \in S$ we have $f_{\alpha}(1) = \alpha$. Such a family is said to be φ -contractive provided that, for all α and β in S and for all t in (0,1) there exists a comparison function φ_t such that

$$||f_{\alpha}(t) - f_{\beta}(t)|| \le \varphi_{t}(||\alpha - \beta||)$$

Such a family F is said to be **jointly continuous** provided that if $t \rightarrow t_0$ in [0,1] and $\alpha \rightarrow \alpha_0$ in S then

$$f_{\alpha}(t) \rightarrow f_{\alpha_0}(t_0)$$
 in S.

THEOREM 1. Suppose S is a compact subset of a Banach space E, and suppose there exists a φ - contractive and jointly continuous family of functions associated with S as in Definition 2. Then any nonexpansive selfoperator T of S has a fixed point in S.

Proof. Let $\{k_n\}_{n\geq 1}$ be a sequence of numbers, $0 \le k_n \le 1$ with $\lim_{n \to \infty} k_n = 1$

and let $T_n: S - S$ be defined by

$$T_n x = f_T x(k_n)$$
, for all $x \in S$.

Since $T(S) \subseteq S$, each T_n is well-defined and maps S into S. Furthermore, for each n and for all x, y in S we have

$$||T_n x - T_n y|| = ||f_{Tx}(k_n) - f_{Ty}(k_n)|| \le \varphi_t(||Tx - Ty||) \le \varphi_t(||x - y||),$$

since φ is monotone increasing and T is nonexpansive. This shows that, for each n, T_n is a φ - contraction (see [1], [5]). On the other hand, as a compact (hence closed) subset of the Banach space E, S is a complete metric space. Therefore, by the generalized contraction mapping principle (see [1], Theorem 1.5.1 or [5]), each operator T_n has an unique fixed point $x_n \in S$.

Since S is compact, there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_j} o$ some $x \in S$. But $T_{n_j} x_{n_j} = x_{n_j}$, hence

$$Tx_{n_j} \neg x$$
, as $j \rightarrow \infty$.

Since T is continuous (as a nonexpansive operator), it results that

$$Tx_{n_j} \to Tx$$
, as $j \to \infty$

which together with the joint continuity yields

$$T_{n_j} x_{n_j} = f_{T_{n_j}}(k_n) - f_{Tx}(1) = Tx .$$

As E is Haussdorf, it follows that Tx = x, that is, T has a fixed point in S. The proof is complete.

Remarks. 1) For $\varphi_t(r) = \varphi(t) \cdot r$, $r \in \mathbb{R}_+$ and $\varphi(t) \in (0,1)$, from Theorem 1 we obtain Theorem 1 of [3].

2) a special case of the above case is Theorem 1 of [4], where S is assumed to be star-shaped. With p a star-centre and $k_n = n/(n+1)$ we have $f_{\alpha}(t) = (1-t)p + t\alpha$ so that

$$T_n x = f_{Tx}(k_n) = (1 - k_n) p + k_n TX$$
,

and one easily checks that, in this case, φ , is as in Example 1:

$$||f_{\alpha}(t) - f_{\beta}(t)|| \le t ||\alpha - \beta||$$
,

and that $f_{\alpha}(t)$ is jointly continuous with respect to t and α .

DEFINITION 3. A family $F = \{f_{\alpha}\}_{\alpha \in S}$ of functions from [0,1] into a set S is said to be **jointly weakly continuous** provided that if $t \to t_0$ in [0,1] and $\alpha \to \alpha_0$ in S then $f_{\alpha}(t) \to f_{\alpha_0}(t_0)$ in S (\to denotes weak convergence).

THEOREM 2. Let S be a weakly compact subset of a Banach space E and suppose there exists a φ - contractive, jointly weakly continuous family F of functions associated with S as in Definition 1. Then any nonexpansive weakly continuous selfoperator T of S has a fixed point in S.

Proof. We repeat mainly the arguments in [3]. For $\{k_n\}$ as in the proof of the Theorem 1, we define $T_n: S \to S$ by $T_n x = f_{Tx}(k_n)$ for all $x \in S$ and for all $n=1,2,3,\ldots$. Then, each T_n is a ϕ - contraction on S. Since the weak topology of E is Haussdorf and S is weakly compact, it results that S is weakly closed and therefore strongly closed. Hence S is a complet metric space with respect to the norm topology of the Banach space E, and so each T_n has an unique fixed point $x_n \in S$. By the Eberline-Smulian theorem, S is weakly sequentially compact. Thus there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $x_{n_j} \to \text{some } x \in S$. Since $T_{n_j} x_{n_j} = x_{n_j}$, it results $T_{n_j} x_{n_j} \to x$ and since T is weakly continuous, we have $Tx_{n_j} \to Tx$. The joint weak continuity now yields

$$T_{n_j} x_{n_j} = f_{Tx_{n_i}}(k_{n_j}) \rightarrow f_{Tx}(1) = Tx$$

and since the weak topology is Haussdorf, we deduce that Tx = x, which ends the proof.

Remark. For $\varphi_t(r) = \varphi(t) \cdot r$, $r \in \mathbb{R}_+$ and $\varphi: (0,1) \neg (0,1)$ a given function, from Theorem 2 in this paper we obtain Theorem 2 in [3].

REFERENCES

- Berinde, V., Generalized contractions and applications, Editura CUB PRESS 22, 1997 (in Romanian)
- [2] Browder, F. E., Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54(1966), 1041-1044
- [3] Dotson, W. G. Jr., On fixed points of nonexpansive mapping in nonconvex sets, Proceed. AMS, vol. 38, No.1, 155-156
- [4] Dotson, W.G. Jr., Fixed point theorems for nonexpansive mappings on starshaped subsets of Banach spaces, J.London Math.Soc. (2) 4(1972), 408-410
- [5] Rus, I. A., Generalized contractions, Seminar on Fixed Point Theory, 1983, 3, 1-130

Received: 2.02.1999

Department of Mathematics and Computer Science Faculty of Sciences, North University of Baia Mare Victoriei 76, 4800 Baia Mare ROMANIA, E-mail: vberinde@univer.ubm.ro