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FIXED POINT THEOREMS FOR NONEXPANSIVE OPERATORS
ON NONCONVEX SETS

Visile BERINDE

Abstract, Two theorems on the existence of fixed points of nonexpansive
seltmappings of a nonconvex set are proved. The results in the present paper extend
the comresponding theorems in [3].

Let E be a Banach space, C a subsct of Eand T a selfoperator of C. It 1s well-
known {see [2], for example) that in an uniformly convex Banach space EVETY
nonexpansive operator T of a closed bounded convex subset C of E hys at least one
hxed pont in C,

(Werecall that 7" ¢ - (7 is noncxpansive if foral xy in C |Fx- 7y <tk )

Dotson [3] proved similar results for {weakly) compact subsets § of a Banach
space, when the convexity of S is replaced by some other properties, described by

means of a family of functions from [0_1] into S. The aim of this paper is (o extend
the Dotson’s results, by considering a generalized contractive condition instead of
that given in [3],

DEFINITION 1, {[1], [5]). A function @ R~ E iscalled comparison
Tunction il
(1) @ 15 monotone IMCTeasing;

(1) the sequence {g"(r)} , convergesto 0, foreach rc E.

( " stands for the n" iterate of ¢ ),
EXAMPLE 1. If O=7<1, then g r)=t-r, foreach re®R  isa

Lypical comparison function. There exist non-continuous and nonlinear comparison
functions (see [1]).
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DEFINITION 2. Let S be a subsct of the Banach space E, and let
I'={ Syt ges bea family of functions from [0.1] into S, having the property that

loreach w=S wehave £ (l)=«. Sucha family is said to be g-contractive

provided that, for all & and [} in S and for all t in (0, I} there exists a comparison

function wp, such thai
LA () —F (D <, (le-P )
such a lamily T is said 1o be jointly continuous provided that if 7 - {, in|0.1]and
e~ e, InSthen

LA = S (4,) inS.

THEOREM 1. Suppose S is a compact subset of a Banach space F. aned
suppose there exisis a @ - contractive and jointly continuous fumily of functions
associated with 8 as in Definition 2. Then any nonexpansive selfoperator T af & hay
¢ fived point in S,

Proof. Let {k } ., beasequence of numbers, 0=k <1 with limk - |
K

andlet T :5- 8 be defined by
Tx=fx(k), forall xc§.

Singe I'(8)= 8, cach T,is well-defincd and maps S into S. Furthermore, for
cach m and for all x, y1in S we have
W= £yl =L Ue) - fr (k) <@ (1 Tx =Ty |} lx-»I),

since @ 1S monotone ingreasing and ‘T is nonexpansive, This shows that, for cach

n, T, 1s a @ - contraction (see [1], [5]). On the other hand, as a compact (hence
closed) subset of the Banach space E. S is a complete metric space. Therefore, by
the generalized contraction mapping principle (see [1], Theorem 1.5.1 or [5]). each

operator T, has an unique fixed point x & §
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Since S is compact, there is a subsequence | x } oof [x

n

I such that Ao
some xS, But 7 ox -x . hence

X rovidy 8 ey

Since T is continuous {as @ nonex pansive operator), it results that
Ix, ~Tx, as j-+w
which together with the joint continuity vields

-I:'T_'x:h'_ _-'Ir;'- .[Ill‘r_u.::l q.'ilr‘;;'_:ll:: [ ::I = T'r

As T is Haussdorf, it follows that  7x = x . that 15. T has a fixed point in 5.

The proofl is complete,
Remarks, 1jFor @ (ry=¢p()r. re B and (e (0.1), from

Theorem 1 we obtain Theorem 1 of |3].
2) a special case of the above case is Theorem | of [4], where §

15 assumed to be star-shaped. With p a star-centre and k =ni(n11) we have
LU =(1-1Yp-ie sothai
fx=fr (k)=(1-k)p+k TX,
and one easily checks that, in this case, @, is as in Example 1:
14,0 (DI <t e-B],
and that £, (f}) is jointly continuous with respect to t and e
DEFINITION 3, A family f=1{f V- Of functions from [0,1] into a set
5 15 said to be jointly weakly continuous provided that i £ - I, in[0,1]and

e ey mSthen f(#)—~f {1,) inS({ — denotes weak convergence)
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THEOREM 2, Let 8§ be a weakly compact subser of a Banach space E and
suppose there exisis a @ - contractive, jointly weakly contmuons family I of
functions associated with 5 as in | Jefinition |, Then any nonexpansive weakly
continuous selfoperator 1 of 8 has a fived poini in 8

Proof. We repeat mainly the arpuments in [3]. For k1 asin the proof of
the Theorem 1, we define 77 :S- 5 by Tx=Ff. (k) forall r=8 and for all

n=1,23 . Then, each T, 1s a g - contraction on $. Since the weak topology

ol E 15 Haussdorf and S is weakly compact, it results that S is weakly closed and
therefore sirongly closed. Hence S is a complet metric space with respect to the
norm topology of the Banach space T, and so each T, has an un ique fixed point

x, =4 . By the Eberline-Smulian theorem, § is weakly sequentially compact,

n
Thus there exists a subsequence {.Ji'ﬁ.li ol {x_ } such that X, - some reS.
Sinee 1 x, = X, it results 7 o ¥, % and since T is weakly continuous, we
have ;f'xnl_ — I'x . The joint weak continuity now vields

L%, I, (k)= fr,(1) = Tx

and since the weak topology 1s Haussdorf, we deduce that 7x = ¢ . which ¢nds

the prool
Remark.Tor @ (r)=¢()-r, reRE and (0.1 ~(0.1) agiven

function, from Theorem 2 in this paper we obtain Theorem 2 in 13].
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