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ON THE INEXACT UZAWA METHODS FOR
SADDLE POINT PROBIL.EMS
ARISING FROM CONTACT PROEBILEM

Nicolae POP

Abstract. In this paper we consider the so called "inexact Uzawa" algorithm for
solving saddle point svstems which arise m the discretization of contact problems. By
usmyg appropriate Lagrangeanes one can transform the original problem (the contact
problem), into a saddle point problem on a convex set.

The mexact Uzawa methods replace the exact inverse of a matrix A by a
"incomplete” or "approximate” evaluation of A

We discuss convergence and applications of inexact Uszawa methods to solving
the contact problems.

. INTRODUCTION

We consider the abstract Uzawa algorithm for linear saddle point problems:

A 87Y [ x g
s e G ¥ g
where Adsan 7 > p syinmetric positive definite matrix, Bisan m < #  matrix, C

1540 W< W symmetric positive semidefinite matrnx, p is a vector in B, q 15 a vector

in E™. For this problem Elman and Golub [4] given the convergence results,
Additional convergence results of mexact Uzawa methods for linear saddle point
problems (1.1) were given by Bramble, Pasciak and Vassilev [1].
The precomditioned inexact Uzawa algorithm 1s defined as tellows [4].
(riven an initial approximation v, of v
Jor k0 until convereence, do

Compute x,_, such that Ax,  =p-8BTy, +§,

K

(ompute
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Vo= gira o (R L =Cyi-g) (f.2)
enddo,

The vector &, s residual of the approximate solution %, 10 the system

Ax=p-8Ty . wisaposilive stepsize, and Qisan m =« m  symmetric positive

definite matrix.
A natural extension of method (1.2) 1o nonlingar saddle points problems, when

Ar - Fix)y, with I7:EY-E" 15 strongly monotone mappmg with modulus n |

and F is not necessanly differentiable, 15
Criven an initial approcimation v, of v
Jor k=0 wntil convergence, do

Compute x,, such that Fix _ )-p-B . .

Compute
Yoog =W t0. 0 (Bx,,, -Cy,—9q) (1.3
eRdid.

The vector &, is again the residual of the approximate solution x, , 1o the system

F{x)=-p-1"y, wisapositivestepsise, and (), 1san m = m symmetric positive

definite matrix.

Afler finite element discreditation of the problems we obtam big sparse
nonsymmetric ill-conditioned lingar systems of equations. Solving these svstems by
direet methods (as Gaossian elimination e} is not an efficient way {(or even
impossible sometime) because of too big computer memory requested for storage and
very big number of elementary arithmetic operaton which 1ogether with the ill-
conditioning aspect can pive 1ise 10 the computational errors. Classical iterative
methods are also not indicated (or impossible to be used) lor such kind of non-
symmetric systems because of their bad convergence properties.

Ome way 1o overcome these difficulties 1s to use precondinoning of the svstem
i.e. to transform it by (formally) lefl and/right matrix multiplications such the new
matrix obtained has more "claustered” spectrum, thus a "small” (independent on the
mesh size) condition number, This paper presents such a preconditioning technique,
for Uzawa algorithm which uses incomplete decomposition of the Gram matrix of the
finite element basis functions.
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We apply these solvers to an unilateral contact problem with friction between
several elastic bodies, The non-lincaritics are the imequalities associated with the
unilateral conditions and with the friction law.

2. VARIATIONAL FORMULATION OF THE CONTACT PROBLEMS
The vanational form of the contact problem with friction is the following

vanational mequality of the second kind:
Find ust such thai

bluv-u)+i(v)-j(u)zLiv-u) ¥vel (2.1)
with b(uv)-a(u,v)+j (u,v), where
. Fedve (H' () v=0o0n T,} isthe function space;

Qe R, d=2 or d-3 isan elastic body which occupies an apen bounded

Lipschitz domain, that come in contact with the rigid foundation;

. r=aQ-T, | I | I~ 18 the Lipschitz contmuous boundary of the €2,
. afu,v)= f-‘_'i {u)e(v) dxy isthe virtual work produced by the action of the
0

stress o on the stram € ;
. f. ()= f c (.- gf" v ds 1s the virmal work produced by normal
T

pressure on the contact boundary I, |

. J (u)= fr ¢ p, | v, | ds s the virtual work produced by tangential pressure
-

on the contact boundary I',.: with p,.-(u, -g)" . g=0 is the initial pap

beiween l"I:. and the fundation, ;, 1s the non-differentiable functional;

s f{v)= fﬂ Fvdx f]_ fvds 15 the virtnal work produced by the volume
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force T in £2 and by the surface traction Ton T, ;

. ¢ .cp,m m, are material constants depending on boundary contact

properties, and (- 3 -max{ - .0 ).

We denote the multiphier space:

A={Ae( LX) | A 21 on suppp, A=0 on T -suppp.} (2.2)
and the restrams sel.
K={velF, v =g} .

The exastence of a multiphics for the problem (2.1) 15 gmiven by:

Theorem 2.1, The function us1 is the solution of the probiem ¢2.1) if and owly
it exists of A such that

bhiu,v) fF erprhvads=L(v), ¥vel (2.3)

AeA,Av,=|v,. ,onl-. (2.4}

For the proof see [6].

3. VARIATIONAL INEQUALITY FORMULATION AS A SADDLE
POINT PROBLEM

Following procedure from Céa and Glowinski [2], we define a Lagrangean &
an K= A,

Theorems 3.1, Lot ue K, As N sadisfying (2.3) and 2.4). Then, (n X))
is the unigue saddle pomt of Lon K= A e

() cLD(wA)sd(v,A), Yrnek=A (2.5)

T'or the proot see [6].
A comsequence of Theorem 2.1 1s
Proposition 3.1. For the solution of the problem (2.1), there exists a unique

AcA . with Avy=|v.| . such that
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h{#,x*"}:f,{v]l—fr CrPrhvods, Y vek .

Remarks. The relationship between the solution of problem (2.1}, denoted by
%, on ahand, and the saddle point (.4} of the second inequality in (2.5), by the
other hand, is given by

u=uc L, o ju}= fpl.u._,.l a.e on . . (2.0)

Therelore the contact problem with given friction can be approximated by solving the
saddle point problem (2.5). This means a minimization problem which contains a non-
differentiable functional has been replaced by an other one in which the Lagrangean
is repular with respect to cach variable. From (2.6} we can deduce a very important
mechanical interpretation for the Lagrange's multipliers,

One other benefit of this formulation consists in the possibility of exploiting of
an Uzawa-type algorithm for the solution of the problem (2.5). which has to
simultaneously compute the displacements as well as the contact tangential

stresses Cr .

4, FINITE ELEMENT APPROXIMATIONS AND THE SOLUTION OF THE
SYSTEM OF EQUATIONS DERIVED FROM A PERTURBED LAGRANGEAN

1Jsing standard finite element procedures, approximate version of problem (2.1)
can be constructed in finite-dimensional spaces 1, (= F'o 177) resulting one discrete
problem (), . For a certain (h) the approximate displacements at each fime ¢ are
¢lements of ¥V,

phe |, (4.1
within each element Qh (e =1...,F,) . Every discrete problem (), 15 4 stahie one,

it requires approximate updating of the displacements and the loads after each
merement.
For each static problem (), w¢ consider an inter approxiunation

(Vo Ky oyt ) and we formulate the following discrete problem:
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Problem (Pk), . Find u) =K, suchthat

. i ; | i iy i ) i 0 T IR ;
Bisy v~ )+ ja o Vi) — g (gt ) 2 L (v -, ) - Fi (v, u, ) (4.2)
We consider a discrete vanational tormulation of the meremental problem

(k) . using for the contact area a three nodes contact element for the two

dimensional case [8]. In the three dimensional case a four node contact element
consisting of three "master” nodes and one "slave™ node. is employed (see [7]).

In all numerical applications we denived a perturbed Lagrangean formulation for
the case of mctional stick and for the case of frictional slide. For the case of fctional
stick the perturbed Lagrangean for the bodies in contact has the following form;

“;fi,I:H,Eﬂ,Er,EI_:I = %.’! (e u) - Liu)+ {4.3)

BGENG BTG - LEL g 4 1 1) 1 105 1
i M ¥ [ ?{ﬂ n Ef.l.'l' E.UJ' ¥
#i f

T

where 1 is the vector nodal displacement E,H .Y .} are the vectors of normal
and tangential nodal contact forces, respectively, & _,G,, G are the vectors of

normal and tangential nodal gaps and @ . @, . e, are the normal and tangential

penalty parameters respectiviely,
The Newton-Raphson method was applicd (o the discrete variational
formulations that can be derived Irom these perturbed Lagrangean functionals.
Astandard assembly procedure can be usced 10 add the contact contributions ot
cach contact element to the global tangent stiffness and residual matrix and thus we

obtain
ﬁ:'g.l.-_ R f.-']_.r].'}

where
& &
K=K,+Y} K:, R= [RJ.?—EJ'-Erf] (4.5)
L

K. R, are mechanical global tangent stiffness matrix and residual vector K-, K2
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are mechanical contributions of contact nod s, [/={AI/ AX AE AZ ) s

approximated solution, § is the total number of the slave nodes,

For the case of frictional slide the relation ]E = U |Eﬂ . where pis the

Lin |
coefficient of friction and ) is the result force of the X, and X_. [forces in

the tangent plane of the contact surface.

5. FORMULATION AND ALGORITHM FOR INEXACT UZAWA SADDLE
POINT PROBLEMS ARISING FROM CONTACT FPROBLEM

The perturbed Lagrangean (4.3) 1s equivalent with a saddle point problem:
find (7,5 .5 5} st

g (U5, 5 B2, (U,%, . 5.8)<L(V.5,.E.5) (5.1)

¥ (V,E .5 .B5)cV,xR'*R =R

If we note with p-(Z ,E X}, the solution of (4.3} is equivalent with the

solution of the algebric equations:
ad,(U.p) - g, (U.p) 4

_ (5.2)
au op
The matniceal form is:
o R Ry
= . (5.3)
B K. Ap R

Starting with an initial approximation Ap, of Ap_ Uzawa algorithm constructs

a sequence of approximations A U7, and Ap,_ as follows:
Jor k=0 until converge, do
Sofve K AL, . =R,-BTAp,
Compute Ap,  =dp +a(BAU  ~K.-&p, - R.)

enddo.
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Elimination of A U7 | from the construction of A p, - gives the iteration:
Ap. =Ap, +e|BK, R, R.-(BKs'BT K. ) Ap]| (54

for the unknowns  {A p, | . This is & fixed-parameter first-order Richardson applied
to the system

B-Ky'BT-K,|[Ap,]-|BK, R, R, . (5.5)
Preconditioned Uzawa algorithms are defined as follows:

) = o = i ¥ TEA 1
et T ={( <, P, gy ”_]tI the Grram matrix of the finite element basis (@, ..., ]

and an incompleie Cholesky decompositionof T - I'=P-P7 -8, where 5 is

affen very sparse matrix (see J A Meirernix ond H A van der Vorst, Math.Comp, 1977).
Formally, a preconditioned version of (5.3) with P as a preconditioner 1s given by:

[P (8-k;" 87 -k e |[PTAp =[P (BKs - Ry -R.)| . (56)

Ky BT | ( AU R
E [ - B (5.7)
B K. Ap R

viliere: Be Ul B s PLE P Ap=PTAn .

Applying the Uzawa alporithm to the system (5.7) would produce a set of
approximations Ap, . Setting p, - # " -Ap, leads to an other preconditioned
Llzawa algorithm:

for k=0 wuntl converge, do

Solve K, AU, =R,-B'+8

Compute Ap, , =Ap, + T [:-Lfﬂ'a Uy ' KoAp, - R,

endedo,
Remarks.Good choices of the scalar e« is determined from following

ohservations:
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cquations (3, 4)-(5.5) imply for the errors satisfy
Ap-Ap=|1-alBk;' 87 -K. ) (Ap-Ap,)

must have p{! —cr.[ﬁ'ff.'_ri.lﬁ' x —K“\J.}-&Tl e, 0<p=

'. T where A, is maximum

cigenvaluc of BK,' B -K,. |
We tried to overcome the difficulties due to the increasing of the condition
number of the matrix AKX, 'B"-K,. ., by applying the method of preconditioning

presented.
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