Dedicated to Professor Ion PAVALOIU on his 60th anniversary

COINCIDENCE POINTS FOR HYBRID CONTRACTIONS SATISFYING AN IMPLICIT RELATION

Valeriu POPA

Abstract. A general coincidence theorem for hybrid contractions satisfying an implicit relation is proved extending the main result from [1].

Key words and phrases:compatible mappings, coincidence points, hybrid contractions, implicit relations.

AMS (1991) Subject classification: 54H25, 47H10

 Introduction. Let (X,d) be a metric space. We denote by CB(X) the set of all nonempty closed bounded subsets of (X,d) and by H the Hausdorff Pompeiu metric on CB(X)

$$H(A,B) = \max\{\sup_{x \in A} d(x,B); \sup_{x \in B} d(x,A)\}$$

where $A, B \in CB(X)$ and

$$d(x,A) = \inf_{y \in A} \{d(x,y)\}.$$

Let $A, B \in CB(X)$ and k > 1. In what follows the following well known fact will be used [3]: For each $a \in A$, there exists $b \in B$ such that $d(a,b) \le kH(A,B)$.

Let $\delta(A,B)=\sup\{d(x,y):x\in A \text{ and }y\in B\}$ for all $A,B\in CB(X)$. If A consists of single valued "a" then we write $\delta(A,B)=\delta(a,B)$. If $\delta(A,B)=0$ then $A=B=\{a\}[5]$. Let S and T be two self mappings of a metric space (X,d). Sessa [6] defines S and T to be weakly commuting if d(STx,TSx)< d(Tx,Sx) for all $x\in X$. Jungek [2] defines S and T to be compatible if $d(STx_n,TSx_n)=0$ whenever $\{x_n\}$ is a sequence in X such that $\lim Tx_n=\lim Sx_n=x$ for some $x\in X$. Clearly, commuting mapping are weakly commuting and weakly commuting mappings are compatible, but neither implication is reversible (Ex.1[7] and ex.2.2 [2]).

Let (X,d) be a metric space, $f: X \neg X$ and $S: X \neg CB(X)$ single and multivalued mappings, respectively.

Definition 1,[1]. The mappings f and S are said to be weakly commuting if for all $x \in X$, $fSx \in CB(X)$ and $H(Sfx, fSx) \le d(fx, Sx)$.

Definition 2, [1] The mapping f and S are said to be compatible if $\lim d(fy_n, Sfx_n) = 0$ whenever $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $\lim fx_n = \lim y_n = z$ for some $z \in X$, where $\{y_n\} \in Sx_n, n = 1, 2, ...$

Weakly commuting mappings f and S are compatible but implication is not reversible (Remark 1.1 and Ex.1.1[1])

Theorem 1. Let (X,d) be a complete metric space and let $S,T:(X,d) \rightarrow CB(X)$ be two multifunctions such that

$$H^{m}(Sx, Ty) \le c \frac{d^{p}(x, Sx) + d^{p}(y, Ty)}{\delta^{p-m}(x, Sx) + \delta^{p-m}(y, Ty)}$$

holds for all x,y in X for which $\delta^{p-m}(x,Sx)+\delta^{p-m}(y,Ty)\neq 0$, where $0\leq c\leq 1$, $m\geq 1$, $p\geq 2$, $m\leq p$. Then S and T have common fixed point and F(S)=F(T), where

$$F(S) = \{x \in X : x \in Sx\}.$$

In this paper we give a general coincidence theorem for hybrid contractions, i.e. contractive conditions involving single-valued and multi-valued mappings, satisfying an implicit relation which generalize Theorem 1.

2. Implicit relations

Let \mathcal{R}_5 be the set of all functions $F(t_1, ..., t_5) : R_+^5 \to R$ with $t_4 + t_5 \neq 0$ satisfying the following conditions:

 K_1 : F is decreasing in variables t_2 , t_3 and non-decreasing in variables t_4 and t_5 ,

 K_2 : there exists k>1 and h \in (0,1) such that

$$(K_a)$$
: $u \le kt$ and $F(t, u, v, u, v) \le 0$

$$(K_h)$$
: $u \le kt$ and $F(t, v, u, v, u) \le 0$

implies $u \le hv$.

Example 1. $F(t_1,...,t_5) = t_1 - c \left[(t_2^p + t_3^p)/(t_4^{p-m} + t_5^{p-m}) \right]^{1/m}$ where $0 \le c \le 1$, $m \ge 1$, $p \ge 2$, $m \le p$ and $t_4 + t_5 \ne 0$.

 K_1 : Obviously.

 K_2 : Let u > 0, $u \le kt$ and $F(t, u, v, u, v) \le 0$ be, where $1 \le k \le (1/c)^{1/m}$. Then u > 0, $u \le kt$ and $f(t, u, v, u, v) \le 0$ be, where $1 \le k \le (1/c)^{1/m}$. Then u > 0, a contradiction. Thus u > 0, then u > 0, u > 0, then u > 0, u > 0, then u > 0, then u > 0, thus u > 0, thus u > 0, then u > 0, thus u > 0, thus u > 0, then u > 0, then u > 0, then u > 0, thus u > 0, then u

Similarly, $u \ge 0$, $u \le kt$ and $F(t, v, u, v, u) \le 0$ implies $u \le hv$. If u = 0 then $u \le hv$.

Example 2. $F(t_1,...,t_5)=t_1^3+t_1^2+t_1-\frac{(b\,t_2+c\,t_3)^2}{t_4+t_5}$ where $0 \le b+c \le 1$ and $t_4+t_5 \ne 0$. K_1 : Obviously. K_2 : Let $u \ge 0, u \le kt$ and $F(t,u,v,u,v) \le 0$ where

 $1 \le k \min \{ 1/b^2, 1/c^2, 2/(b+c)^2 \}$.

Then $t^3 + t^2 + t - \frac{(bu + cv)^2}{u + v} \le 0$ which implies $t - \frac{(bu + cv)^2}{u + v} \le 0$.

Then $u \le kt \le k \frac{(bu+cv)^2}{u+v}$ implies $u^2(1-kb^2) + uv(1-2bck) - c^2v^2k \le 0$.

If v=0 then u=0, a contradiction. Thus $q^2(1-kb^2)+q(1-2bck)-kc^2 \le 0$ where q=u/v. Let $f:[0,\infty)\to R$ be the function $f(q)=(1-kb^2)+uv(1-2bck)q-c^2k$. Then f(0)<0 and $f(1)=2-k(b+c)^2>0$. Let $h_1\in(0,1)$ the root of the equation f(t)=0, then $f(t)\le 0$ for $t\le h_1$ and thus $u\le h_1$. Similarly, u>0, $u\le kt$ and $F(t,v,u,v,u)\le 0$ implies $u\le h_2v$, where $h_2\in(0,1)$. Then $u\le hv$, where $h=\max\{h_1,h_2\}$ and $h\in(0,1)$. If u=0 then $u\le hv$.

3. Main result

Theorem 2. Let (X,d) be a complete metric space. Let $f,g:X\to X$ be continuous single-valued mappings and $S,T:X\to CB(X)$ be H-continuous multivalued mappings such that

- (3.1) $T(X) \subset f(X)$ and $S(X) \subset g(X)$,
- (3.2) The pairs {f, S} and {g,T} are compatible,
- (3.3) $F(H(Sx,Ty),d(fx,Sx),d(y,Ty),\delta(fx,Sx),\delta(gy,Ty)) \le 0$ for all

$$x,y \in X$$
 with $\delta(fx,Sx) + \delta(gy,Ty) \neq 0$ for $F \in K_5$, then

f and S have a coincidence point and g and T have a coincidence point or
 f and S and g and T have a common coincidence point.

Proof. Let x_0 be an arbitrary but fixed element of X. Since $T(X) \subseteq f(X)$ and $k \ge 1$ there exist $x_1 \in X$ such that $y_1 = gx_1 \in Sx_0$. Since $T(X) \subseteq f(X)$ and $k \ge 1$ there exist $y_2 = fx_2 \in Tx_1$ such that

$$d(y_1, y_2) = d(gx_1, fx_2) \le k H(Sx_0, Tx_1).$$

Similarly, there exists a point $x_3 \in X$ such that $y_3 - gx_3 \in Sx_2$ and

$$d(y_2, y_3) = d(fx_2, gx_3) \le k H(Sx_2, Tx_1).$$

Inductively, we can obtain the sequences $\{x_n\}$, $\{y_n\}$ such that

- (1) $y_{2n+1} = gx_{2n+1} \in Sx_{2n}$
- (2) $y_{2n+2} = fx_{2n+2} \in Tx_{2n+1}$
- (3) $d(y_{2n+1}, y_{2n}) \le kH(Sx_{2n}, Tx_{2n-1})$ and
- (4) $d(y_{2n+1}, y_{2n+2}) \le kH(Sx_{2n}, Tx_{2n+1})$, for every $n \in \mathbb{N}$.

First suppose that some $n \in \mathbb{N}$, $\delta(fx_n, Sx_{2n}) + \delta(gx_{2n+1}, Tx_{2n+1}) = 0$.

Then $fx_{2n} \in Sx_{2n}$ and $gx_{2n-1} \in Tx_{2n-1}$ and so x_{2n} is a coincidence point of f and

S and x_{2n+1} is a coincidence point of g and T.

Similarly, $\delta(fx_{2n+2}, Sx_{2n+2}) + \delta(x_{2n+1}, Tx_{2n+1}) = 0$ for some $n \in \mathbb{N}$, implies that x_{2n+2} is a coincidence point of f and S and x_{2n+1} is a coincidence point of g and T. Now, suppose that $\delta(fx_{2n+1}, Sx_{2n}) + \delta(gx_{2n+1}, Tx_{2n+1}) \neq 0$ for $n \in \mathbb{N}$. Then by (3,3) we have successively $F(H(Sx_{2n}, Tx_{2n+1}), d(fx_{2n}, Sx_{2n}), d(x_{2n+1}, Tx_{2n+1}), \delta(fx_{2n}, Sx_{2n}), \delta(gx_{2n+1}, Tx_{2n+1})) \leq 0$

(5)
$$F(H(Sx_{2n}, Tx_{2n+1}), d(y_{2n}, y_{2n-1}), d(y_{2n-1}, y_{2n+2}), d(y_{2n}, y_{2n-1}), d(y_{2n+1}, y_{2n-2})) \le 0$$
.
If $d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n}) = 0$ then $fx_{2n} = gx_{2n+1} \in Sx_{2n}$ and

 $gx_{2n+1} = fx_{2n+2} Tx_{2n+1}$ and thus x_{2n} is a coincidence point of f and S and x_{2n+1} is a coincidence point of g and T. Let $d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}) \neq 0$ for $n \in \mathbb{N}$. Then by condition (K_b) , (4) and (5) we have

(6)
$$d(y_{2n+1}, y_{2n+2}) \le h d(y_{2n}, y_{2n+1})$$
.

Similarly, by (3.3) we have

(7)
$$F(H(Tx_{2n+1},Sx_{2n+2}),d(y_{2n+2},y_{2n+3}),d(y_{2n+1},y_{2n+2}),d(y_{2n+2},y_{2n-3}),d(y_{2n+1},y_{2n+2})) \le 0$$

If $d(y_{2n+2},y_{2n+3}) + d(y_{2n+1},y_{2n+2}) = 0$, then $gx_{2n+1} = fx_{2n+2} \in Tx_{2n+1}$ and $fx_{2n+2} = gx_{2n+3} \in Sx_{2n+2}$ and thus x_{2n+1} is a coincidence point f and S and x_{2n+2} is a coincidence point of g and T. Let $d(y_{2n+2},y_{2n+3}+d(y_{2n+1},y_{2n+2}) \ne 0$ for $n \in \mathbb{N}$. Then by conditions (K_n) , (7) we have

(8)
$$d(y_{2n+2}, y_{2n-3}) \le h d(y_{2n+1}, y_{2n-2}).$$

By (6) and (8) it follows that the sequence $\{y_n\}$ is a Cauchy sequence in X. Since (X,d) is a complete metric space, let $\lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} fx_{2n} = z$. Now, we will prove that $fz \in Sz$, that is, z is a coincidence point of f and S. For every $n \in \mathbb{N}$, we have

(9)
$$d(fgx_{2n+1}, Sz) \le d(fgx_{2n+1}, Sfx_{2n}) + H(Sfx_{2n}, Sz).$$

It in follows from the H-continuity of S that

$$(10) \qquad lim H(Sfx_{2n}, Sz) = 0$$

since $fx_{2n} \to z$ as $n \to \infty$. Since f and S are compatible mapping and $\lim f(u_n) = \lim v_n = z \text{ where } v_n = gx_{2n+1} \in Sx_{2n} \text{ and } u_n = x_{2n}, \text{ we have}$

(11)
$$\lim d(fv_n, Sfx_{2n}) = \lim d(fgx_{2n+1}, Sfx_{2n}) = 0.$$

Thus from (9),(10) and (11) we have $\lim d(fgx_{2n+1}, Sz) = 0$ and so, from $d(fz, Sz) \le d(fz, fgx_{2n+1}) + (fgx_{2n+1}, Sz)$ and the continuity, it follows that d(fz, Sz) = 0, which implies that $fz \in Sz$ since Sz is a closed subset of X. Similarly, we can prove that $gz \in Tz$, that is, z is a coincidence point of g and T. This completes the proof.

REFERENCES

- I.J.Cho, Fisher and G.S.Geaga, Coincidence theorems for nonlinear hybrid contractions, Internat. J.Math. and Math.Sci. 20(1997), 249-256
- [2] G.Jungck, Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci., 9(4), (1986), 771-779
- [3] S.B.Nadler, Multivalued contraction mappings, Pacific J. Math., 20(2), (1969),475-488
- [4]V.Popa, Common fixed point for multifunction satisfying a rational inequality, Kobe J. Math., 2(1983), 23-28
- [5] I.A.Rus. Fixed point theorems for multi-valued mappings in a complete metric space, Math. Japonica, 20(1975), 21-24
- [6] S.Sessa, On weak commutativity condition of mappings in fixed point considerations, Publ.Inst.Math., 32 (46), (1982), 146-153
- [7] S.Sessa and B. Fisher, Common fixed point of weakly commuting mappings, Bull. Polish. Acad.Sci.Math., 36 (1987), 341-349

Received: 01.02.1999

Department of Mathematics
University of Bacău
5500-Bacău
ROMANIA
E-mail: vpopa@ub.ro