Bul. Științ. Univ. Baia Mare

Dedicated to Professor Ion PĂVAÎOÎIU on his 60th anniversary

COINCIDENCE POINTS FOR HYBRID CONTRACTIONS SATISFYING AN IMPLICIT RELATION

Valeriu POPOA

Abstract. A general coincidence theorem for hybrid contractions satisfying an implicit relation is proved extending the main result from [1].

Key words and phrases: compatible mappings, coincidence points, hybrid contractions, implicit relations.

AMS (1991) Subject classification: 54H25, 47H10

1. Introduction. Let (X,d) be a metric space. We denote by $CB(X)$ the set of all nonempty closed bounded subsets of (X,d) and by H the Hausdorff Pompeiu metric on $CB(X)$

$$H(A,B) = \max\{\sup_{x \in A} d(x,B); \sup_{x \in B} d(x,A)\}$$

where $A, B \in CB(X)$ and

$$d(x,A) = \inf_{y \in A} \{d(x,y)\}.$$

Let $A, B \in CB(X)$ and $k > 1$. In what follows the following well known fact will be used [3]: For each $a \in A$, there exists $b \in B$ such that $d(a,b) \leq kH(A,B)$.

Let $\delta(A,B) = \sup\{d(x,y) : x \in A \text{ and } y \in B\}$ for all $A, B \in CB(X)$. If A consists of single valued "a" then we write $\delta(A,B) = \delta(a,B)$. If $\delta(A,B) = 0$ then $A = B = \{a\}$[5].

Let S and T be two self mappings of a metric space (X,d). Sessa [6] defines S and T to be weakly commuting if $d(STx, TSx) < d(Tx, Sx)$ for all $x \in X$. Jungck [2] defines S and T to be compatible if $d(STx_n, TSx_n) \to 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim Tx_n = \lim Sx_n = x$ for some $x \in X$.

Clearly, commuting mapping are weakly commuting and weakly commuting mappings are compatible, but neither implication is reversible (Ex. 1[7] and ex. 2.2 [2]).

Let (X,d) be a metric space, $f : X \to X$ and $S : X \to CB(X)$ single and multivalued mappings, respectively.
Definition 1, [1] The mappings \(f \) and \(S \) are said to be weakly commuting if for all \(x \in X, fSx \in CB(X) \) and \(H(Sfx, fSx) \leq d(fx, Sx) \).

Definition 2, [1] The mapping \(f \) and \(S \) are said to be compatible if
\[
\lim d(fy_n, Sfx_n) = 0 \quad \text{whenever} \quad \{x_n\} \quad \text{and} \quad \{y_n\} \quad \text{are sequences in} \quad X \quad \text{such that}
\]
\[
\lim fx_n - \lim y_n = z \quad \text{for some} \quad z \in X, \quad \text{where} \quad \{y_n\} \in Sx_n, \quad n=1,2,...
\]

Weakly commuting mappings \(f \) and \(S \) are compatible but implication is not reversible (Remark 1.1 and Ex. 1.1[1]).

Theorem 1. Let \((X,d)\) be a complete metric space and let \(S,T:(X,d) \rightarrow CB(X) \) be two multifunctions such that
\[
H^m(Sx, Ty) \leq c \frac{d^p(x, Sx) + d^p(y, Ty)}{\delta^m(x, Sx) + \delta^m(y, Ty)}
\]
holds for all \(x, y \) in \(X \) for which \(\delta^m(x, Sx) + \delta^m(y, Ty) \neq 0 \), where \(0 < c < 1, \ m > 1, \ p \geq 2, \ m < p \). Then \(S \) and \(T \) have a common fixed point and \(F(S) = F(T) \), where \(F(S) = \{ x \in X : x \in Sx \} \).

In this paper we give a general coincidence theorem for hybrid contractions, i.e. contractive conditions involving single-valued and multi-valued mappings, satisfying an implicit relation which generalize Theorem 1.

2. Implicit relations

Let \(\mathcal{H}_5 \) be the set of all functions \(F(t_1, \ldots, t_5) : R^5_+ \rightarrow R \) with \(t_4 + t_5 \neq 0 \) satisfying the following conditions:

\(K_1 : F \) is decreasing in variables \(t_2, t_3 \) and non-decreasing in variables \(t_4 \) and \(t_5 \),

\(K_2 : \) there exists \(k > 1 \) and \(h \in (0,1) \) such that
\[
(K_a) : u \leq kt \quad \text{and} \quad F(t, u, v, u, v) \leq 0
\]
\[
(K_b) : u \leq kt \quad \text{and} \quad F(t, v, u, v, u) \leq 0
\]

implies \(u \leq hv \).

Example 1. \(F(t_1, \ldots, t_5) = t_1 - c \left[\left(\frac{t_2^p + t_3^p}{t_4^m + t_5^m} \right)^{1/m} \right] \) where \(0 < c < 1, \ m > 1, \ p \geq 2, \ m < p \) and \(t_4 + t_5 = 0 \).
K_1: Obviously.

K_2: Let $u > 0$, $u < kt$ and $F(t, u, v, u, v) \leq 0$ be, where $1 < k < (1/c)^{1/m}$. Then $u^p + u^mv^p - k^m cu^p - k^m cv^p \leq 0$. If $v = 0$, then $u = 0$, a contradiction. Thus $q^p(1 - k^m c) + q^m - k^m c < 0$ where $q = u/v$. Let $f : [0, \infty) \to \mathbb{R}$ be the function $f(q) = q^m(1 - k^m c) + q^m k^m c$. Then $f'(q) > 0$ for any $q > 0$, $f(0) < 0$ and $f(1) - 2(1 - k^m c) > 0$. Let $h \in (0, 1)$ be the root of the equation $f(q) = 0$, then $f(q) \leq 0$ for $q \leq h$, thus $u \leq hv$, where $h \in (0, 1)$.

Similarly, $u > 0$, $u < kt$ and $F(t, v, u, v, u) \leq 0$ implies $u < hv$.

If $u = 0$ then $u < hv$.

Example 2. $F(t_1, ..., t_5) = t_1^3 + t_2^2 - t_1 - \frac{(bt_2 + ct_3)^2}{t_4 + t_5}$ where $0 < b + c < 1$ and $t_4 + t_5 \neq 0$.

K_1: Obviously.

K_2: Let $u > 0$, $u < kt$ and $F(t, u, v, u, v) \leq 0$ where $1 < k \min \left\{ \frac{1}{b^2}, \frac{1}{c^2}, 2/(b + c)^2 \right\}$.

Then $t^3 + t^2 + t - \frac{(bu + cv)^2}{u + v} \leq 0$ which implies $t - \frac{(bu + cv)^2}{u + v} \leq 0$.

Then $u < kt \leq k \frac{(bu + cv)^2}{u + v}$ implies $u^2(1 - kb^2) + uv(1 - 2bck) - c^2v^2k \leq 0$.

If $v = 0$ then $u = 0$, a contradiction. Thus $q^2(1 - kb^2) + q(1 - 2bck) - k^2c^2 < 0$ where $q = u/v$. Let $f : [0, \infty) \to \mathbb{R}$ be the function $f(q) = (1 - kb^2) + uv(1 - 2bck)q - c^2k$.

Then $f(0) < 0$ and $f(1) - 2 - k(b + c)^2 > 0$. Let $h_1 \in (0, 1)$ the root of the equation $f(t) = 0$, then $f(t) \leq 0$ for $t \leq h_1$ and thus $u \leq h_1$. Similarly, $u > 0$, $u < kt$ and $F(t, v, u, v, u) \leq 0$ implies $u \leq h_2v$, where $h_2 \in (0, 1)$. Then $u < hv$, where $h = \max\{h_1, h_2\}$ and $h \in (0, 1)$. If $u = 0$ then $u < hv$.
3. Main result

Theorem 2. Let \((X,d)\) be a complete metric space. Let \(f,g:X \to X\) be continuous single-valued mappings and \(S,T:X \to \text{CB}(X)\) be \(H\)-continuous multi-valued mappings such that

1. \(T(X) \subset f(X)\) and \(S(X) \subset g(X)\),
2. The pairs \(\{f, S\}\) and \(\{g, T\}\) are compatible,
3. \(F(H(Sx,Ty), d(fx,Sx), d(y,Ty), \delta(fx,Sx),\delta(gy,Ty)) < 0\) for all \(x,y \in X\) with \(\delta(fx,Sx) + \delta(gy,Ty) > 0\) for \(F \in K_3\), then

1°. \(f\) and \(S\) have a coincidence point and \(g\) and \(T\) have a coincidence point or
2°. \(f\) and \(S\) and \(g\) and \(T\) have a common coincidence point.

Proof. Let \(x_0\) be an arbitrary but fixed element of \(X\). Since \(T(X) \subset f(X)\) and \(k > 1\) there exist \(x_1 \in X\) such that \(y_1 = gx_1 \in Sx_0\). Since \(T(X) \subset f(X)\) and \(k > 1\) there exist \(y_2 = fx_2 \in Tx_1\) such that

\[
d(y_1, y_2) = d(gx_1, fx_2) < kH(Sx_0, Tx_1).
\]

Similarly, there exists a point \(x_3 \in X\) such that \(y_3 = gx_3 \in Sx_2\) and

\[
d(y_2, y_3) = d(fx_2, gx_3) < kH(Sx_2, Tx_1).
\]

Inductively, we can obtain the sequences \(\{x_n\}, \{y_n\}\) such that

1. \(y_{2n+1} = gx_{2n+1} \in Sx_{2n}\),
2. \(y_{2n-2} = fx_{2n-2} \in Tx_{2n-1}\),
3. \(d(y_{2n+1}, y_{2n}) < kH(Sx_{2n}, Tx_{2n-1})\) and
4. \(d(y_{2n+1}, y_{2n+2}) < kH(Sx_{2n}, Tx_{2n+1})\), for every \(n \in \mathbb{N}\).

First suppose that some \(n \in \mathbb{N}\), \(\delta(fx_n, Sx_{2n}) + \delta(gx_{2n+1}, Tx_{2n+1}) = 0\).

Then \(fx_{2n} \in Sx_{2n}\) and \(gx_{2n+1} \in Tx_{2n+1}\) and so \(x_{2n}\) is a coincidence point of \(f\) and
S and \(x_{2n+1} \) is a coincidence point of \(g \) and \(T \).

Similarly, \(\delta(fx_{2n-2}, Sx_{2n+1}) + \delta(x_{2n-1}, Tx_{2n-1}) = 0 \) for some \(n \in \mathbb{N} \), implies that \(x_{2n-2} \) is a coincidence point of \(f \) and \(S \) and \(x_{2n-1} \) is a coincidence point of \(g \) and \(T \). Now, suppose that \(\delta(fx_{2n+1}, Sx_{2n}) + \delta(gx_{2n+1}, Tx_{2n+1}) \neq 0 \) for \(n \in \mathbb{N} \).

Then by (3.3) we have successively

\[
F(H(Sx_{2n}, Tx_{2n+1}), d(fx_{2n}, Sx_{2n}), d(x_{2n-1}, Tx_{2n-1}), \delta(fx_{2n}, Sx_{2n}) + \delta(gx_{2n+1}, Tx_{2n+1})) \leq 0
\]

(5) \(F(H(Sx_{2n}, Tx_{2n+1}), d(y_{2n}, y_{2n-1}), d(y_{2n-1}, y_{2n-2}), d(y_{2n}, y_{2n-1}), d(y_{2n-1}, y_{2n-2})) \leq 0 \).

If \(d(y_{2n}, y_{2n-1}) + d(y_{2n-1}, y_{2n-2}) = 0 \) then \(fx_{2n} = gx_{2n+1} \in Sx_{2n} \) and

\(gx_{2n+1} = fx_{2n+2} \in Tx_{2n+1} \) and thus \(x_{2n} \) is a coincidence point of \(f \) and \(S \) and \(x_{2n+1} \) is a coincidence point of \(g \) and \(T \). Let \(d(y_{2n}, y_{2n-1}) + d(y_{2n-1}, y_{2n-2}) \neq 0 \) for \(n \in \mathbb{N} \). Then by condition \((K_\delta) \), (4) and (5) we have

\[
(6) \quad d(y_{2n-1}, y_{2n+2}) \leq h d(y_{2n}, y_{2n-1}).
\]

Similarly, by (3.3) we have

(7) \(F(H(Tx_{2n+1}, Sx_{2n+2}), d(y_{2n+2}, y_{2n+3}), d(y_{2n+1}, y_{2n+2}), d(y_{2n+2}, y_{2n+3}), d(y_{2n+1}, y_{2n+2})) \leq 0 \)

If \(d(y_{2n+2}, y_{2n+3}) + d(y_{2n+1}, y_{2n+2}) = 0 \), then \(gx_{2n+1} = fx_{2n+2} \in Tx_{2n+1} \) and

\(fx_{2n+2} = gx_{2n+3} \in Sx_{2n+2} \) and thus \(x_{2n+1} \) is a coincidence point \(f \) and \(S \) and \(x_{2n+2} \) is a coincidence point of \(g \) and \(T \). Let \(d(y_{2n+2}, y_{2n+3}) + d(y_{2n+1}, y_{2n+2}) \neq 0 \) for \(n \in \mathbb{N} \).

Then by conditions \((K_\delta) \), (7) we have

\[
(8) \quad d(y_{2n+2}, y_{2n+3}) \leq h d(y_{2n+1}, y_{2n+2}).
\]

By (6) and (8) it follows that the sequence \(\{y_n\} \) is a Cauchy sequence in \(X \). Since \((X, d)\) is a complete metric space, let \(\lim gx_{2n+1} = \lim fx_{2n} = z \). Now, we will prove that \(fz \in Sz \), that is, \(z \) is a coincidence point of \(f \) and \(S \). For every \(n \in \mathbb{N} \), we have
(9) \[d(fgx_{2n+1},Sz) \leq d(fgx_{2n+1},Sfx_{2n}) + H(Sfx_{2n},Sz). \]

It follows from the H-continuity of S that

(10) \[\lim H(Sfx_{2n},Sz) = 0 \]

since \(fx_{2n} \to z \) as \(n \to \infty \). Since \(f \) and S are compatible mapping and

\[\lim f(u_n) = \lim v_n = z \] where \(v_n = gx_{2n+1} \in Sx_{2n} \) and \(u_n = x_{2n} \), we have

(11) \[\lim d(fv_n,Sfx_{2n}) = \lim d(fgx_{2n+1},Sfx_{2n}) = 0. \]

Thus from (9),(10) and (11) we have \(\lim d(fgx_{2n+1},Sz) = 0 \) and so, from

\[d(fz,Sz) \leq d(fz,fgx_{2n+1}) + (fgx_{2n+1},Sz) \] and the continuity, it follows that

\[d(fz,Sz) = 0, \] which implies that \(fz \in Sz \) since \(Sz \) is a closed subset of \(X \).

Similarly, we can prove that \(gz \in Tz \), that is, \(z \) is a coincidence point of \(g \) and \(T \).

This completes the proof.

REFERENCES

Received: 01.02.1999

Department of Mathematics
University of Bacău
5500-Bacău
ROMANIA
E-mail: vpopa@ub.ro