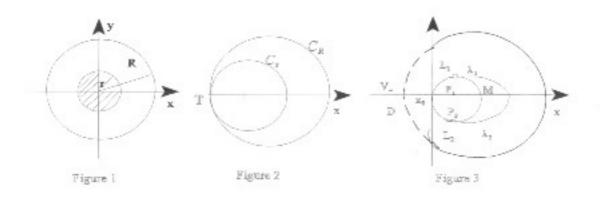
Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, Vol. XV(1999), Nr. 1-2, 67-74

Dedicated to Professor Ion PAVALOIU on his 60th anniversary

THE MODELLING OF INCOMPRESSIBLE FLUID MOVEMENT USING HELMHOLTZ'S DIAGRAM

Lidia Elena KOZMA


1. INTRODUCTION.

We consider the steady flow of incompressible fluid, which moves in the circular domain $r^2 \le x^2 + y^2 \le R^2$ asishown (Figure 1)

We assume that in a very short time, the interior circle travels almost tangential to the exterior circle. If the circles were tangent, the velocity of their the contact point is zero [1].

We study the flow immediately after the two circles move away(see.Figure 2). Futher we make the following hypotheses:

The fluid attacs the interior solid circle with velocity V_∞ in a point O, (see. Figure 3). The stream lines, DO, branches out in two streames lines along the solid OP₁ ≡ L₁ and OP₂ ≡ L₂.

