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A characterization of the cfficient solutions of
mmmltiobjective optimization problems by
means of a scalar problem
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Abstract

A useful way to characterize the efficient solutions of mmltiohjec-
tive aptimization problems ia to refer (o the optimal solutions of
sealar optimization problem derived from the multiohjective probhem,
We nae this spproach to give some characterizations of Lhe eflicient so-
ltions. We also present a suflicient condition for an oplimal sohation
of the scalar problem to be an efficient solution of the multinhjective
problem.

1 Introduction

A commen technigque in mmltiobjective optimization problems s to converd
the problem inlu a scalar optimization problem. This can be done in a
variety of ways, and the multiobjective programming Iiteratnre contains a
lat. of examples in this sense [see 2|, 8], [B], [7], [B])- Such an appruach
can he usefnl when we try to characterize the efficient solutions [or weally
efficient solutions) of mmltichjective problems using the optimal solutions
of the attached scalar problem. The weight method 18 a well known way
of obtaining a scalar problem from s mmlticbjective optimization problem.
and we shall use this approach to characterize the efficient solutiona of a
rmultiohjective maximization problem.

The purpose of the present paper s, un the one hand, Lo give some char-
acterizations of the efficient solutivns in terms of the uptimal solutions of Lhe
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scalar problem assuciated by the welght method and. un the other hand, to
extend and supplement a known result in [4].

2 Definitions and properties

Consider the mmltichjective vplimization problem:

{M{u*}{ afelli= (fu () s o S ()] — ma
where X C EF is nuonempty and [ = l::fl _|'1l'| . ¥ —s R™ is & vector-valued

function.
Let J = {f1.-: fn) . We nze the following relations. For a, b £ [E®
azhif ap 2 b, for k=101
a > b il a = by, for k= 1, ...,n with at least une strict ineguality;
a>b iffap >b,fork=1,.. mn

Definition 2.1 4 peint & & X i called

i) on efficient solution of {MOP) if there does not exist i X zuch that
fl) > [ ()

h) a weally efficient solution of | MOP) if there does not exisl y € X such
that f{y) = [z}

¢} o local (resp, weakly) efficient eolution of (M) if therr: dees not ceist
g € [N X such that f () = [ (2] (resp. fly) = [{x)) for some neighborfood
[} of &

Ve shall also need the definitions of some types of functions, similar to
comeave functions, but which have unly some of the properties of these func-
r1oms.

Definition 2.2 Let X C B be e convex set and g : X —Ra funclion. We
sy thal g is
a) quasiconcave en X if, for all x,y € X,

gty +{1—1)z) 2 min{g (z),p{w)}, Jorallte 10, 1[;
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bj strictly quasiconcave on X ) for all r,y € X such thal g (y) # gl
glly 4 (L — 1)) = min{g (x),g(y)}, forallte]0,1];

¢) explicitly quasiconcave on A if g iz strictly quasicomcove ond guasi-
PETICALE]
d) strongly quasiconcave on X of, for all r,y & X sguck that r # u,

gty + (1 — 1)) > min {g (z), g}, forallt ] 1],

It is easy to =oe that the following implications hold: for a [unction [

f concave = [ explicitly quasiconcave = f euasiconeave and shrictly
fuasi comeave.

However, there exist quasicuncave funclions which are not strictly quasi-
concave and reciprocally, as can be seen [rom the fullowing examples,

Frample 1. Consider g : [=1,1] — &

. —z, ¢ |—1,0]
..; ¥ |:|! JE]U-.]-]

It can be essily seen that g is a guasiconcave function but it is not strietly

QasiConcave.
Ezample 2. Let g:[-1,1] = R,

Gl _{ —l:r: z € [—1,1]

.

In this case, g 1s a strictly quasiconcave funection bat it is not guasiconcave.

However. a strictly quasiconcave function which is upper-somicontinious
is alwavs & guasiconcave function according to [1]. It iz also worth noting
that a strungly qnasiconeave function is strietly quasiconcave; the cunverse
i not true, sinee il suffices Lo consider g [- 1,1] — B where

() = 0, r#10
HI.’_ —l..\,..3=[|'

For ather properties and relations between quasiconcave, strictly gquasi-
concave and strongly quasiconcave functions we refer to (9],
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3 Necessary and sufficient conditions

Fur { MOP) we consider the acalar optimization problem:

(Puy) | ZehE) - ma

xe X

where w = (1, ., uy) is a weight vector from R™

We mention in the beginning some known results concerning the charac-
terization of efficient solutions of (M) in terms of the optimal solutions
of the currespanding scalar problem (£ (w)) ([4], [7]). The first two results
provide necessary conditions for the efficient sulutions, while the next two
results are sufficient conditions for the efficient solutions of (MO}, which
we shall cumplete with & new result in Theorem 3.2

Proposition 3.1 /7 [ X CRF is a conwer sef and - X — BT 45 0 concave
function on X, then for each efficient solution T of [ MOPY, there s ot least

. n
one werforw e W = cw= [wh ey diin ) | W =0, i=1,n, E oy = 1} zardt
i—1

tha! 7 is an optimad solufion of {1 [w)).

We shall consider Lhe following assumption concemning the [unction J:
Assumption (A): For any = € X and y £ X, we have

Max [ (Az + (1= A)y) 2 {AMax f(z) + (1 - A} Max f ()},
for all A € ]0, 1], where Max f (x) =max {fi (z),... Ju ()} .
Proposition 3.2 [§] Consider the problem (MOF), where X C B i o
conver set and f 2 X — B iz a componenfuise guasiconcave funclion. If

T & X is an cfficient solution of (MO} and if Assumption (A} holds, then
there emsts a nonzern w & BY Y [0} such tha

1,_.""JI' () 2 1.-_,"J' {x), foralixe X,

which means thal T &5 an opbmal solution of (17 {w)}.
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Proposition 3.3 [ The poinf £ € X is an efficient solution of the problem
(MO if there eristz a weight veclor w € W such thal T is an oplimul
solution of the optimizalion problem (I (w)) attached to (MOF) and if at
least one of the following conditerns hold:

(i) T is a unigne optimal solution of (4 {ar}) s

(i) wy =0 for each j € {1, g T}

Fnrther, we recall some definitions concerning the vector-valued funetions,

Lol X he a convex set from BP. We say that ¢ = (g, e}t X 2 R" is
(k)-strongly yuasiconcan: on X if it components gq, ¢ & {1, .., 1} Y (&}, are
quasiconcave on X and il ge is a strongly quasiconeave unetion on X.

Lue and Schaible (6] have introduced for the vectur-valued case the cun-
cept of explicit quasiconcavity, which is more yeneral than compeonentwise
excplicit guasiconcavity. Namely considering f = (f1, .- Ja) 1 X — R", where
X C BF is a convex set, then [ iz called explicilly quusiconcaoe il f iz com-
punentwise quasiconcave and, for all =1 © X such that f{y) # f(x), we
have

fity+(1-t)r)=> Min{f (x), [ (1))}, for all ¢ € |0, 1],

where Min{f (z),f(y)} = (min {fr{x). fii{z)}, ., mn [ fo {2}, fu ()} Ve
R".

We give now a result connecting the multiobjective problem [ W) and
the scalar oplimization problem (P {w}). We also inchide its proof since we
vefer to it later,

Theorem 3.1 [§/ Consider (MOP), where X © B 1# o conver sel. For
some k € {1,...,n} fized, let f: X — TR be (k)-strongly quasiconcave on X,
£ B with wy, = 0 and lef ¢ X be alocal opfimud soluttor of

ﬂ.‘TJ" () — max

P {5
Then T i an cffictent solution of (MOF).

Proof Assume the contracy, i.e. F iz an optimal solution of (£ {w)}
but is not an efficient sohution of [ M F). Hence there exists some e X
such that (2% = f(%). Then, f;{2") Z J; (#), for all j & (1,..,n} and
(2™ % J (%), which means = # .
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Then, for any A < [0, 1], we have

fi (A" 4+ (1= A) f} = min { f; {,1:':'_] S @ =fi(F), foralje {1,....,m}

ard _
Fe(Az® £ (1 - A)2) > min{fi ("), i ()} = fu (2).
Heree.,
Z wy fi (T+ A |::.IZD - _EJ} I ij.f_.r- (), forall Ae]0,1f,
=7 i=1
1.€.,

wTf (T4 M (=" —2)) =" f (), forall Ac]0,1].

For A small enough, we have that in some neighborhuod of T, there exists a
point i £ X such that

'F!-'Tf (y) = w [ {F),
which cuntradiets the [act that ¥ iz a local sohition of (P {w)}. O
If the assumplion of (k)-strongly quasiconcavicy on [ is replaced by the
sssumption of explicit quasiconcavity, we gel a similar result,

Theorem 3.2 Consider (MOP), where X C© BF i o conver sel and [ :
¥ — B is caplicitly guasiconcave on X Lef w & B® with w; = 0 for each
ie{l,..n}. IfFe X is alocal opltimal solufion of (Piw)}, hen I iz on
effictent solution of (MOF).

Proof: Assume that # & X is a local optimal solution of (P (w)) but it
is not an efficient solution of (MOP), i.e, there exists some 2" € X such
that f (2" = J{#). Then, [ (%) # § (¥) and [rom the assumption of explicit
quasiconcavity on f, we have that

FO"+(1—NF) = Min{f ("), f(2)} =S (#), forall Ac01].
Hence,

L+ - NB 2 (@), forall e {l.,n)
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and there exists k © {1,....n} such that fi (Az" + (1 — A}F] = fi (Z). But
w = . and then

3wl (A (1= 2)F) = Y wify (7). forall A€]o1].
i-1 a1

Therefure [or A small enongh, we have that T is nol a loeal solntion of (F (w)},
which is a contradiction. Il
We notice that Theorern 3.2 is move general than Theorem 3.1, Indeed.
if f: X — R®is a {k)-strongly quasiconcave function then [ is explicitly
guasiconcave; the converse is not frue, as we can see from the fullowing
example.
Erample & let f = (fi,fa) : [-1.1] — E* be a vector-valued function,

where [ D]
—r, & € |—1,
Ji () { 0, = =10,1]

3 o ﬂ:. = |. l'[]]

f!:'.r.:'_ { —:'.l'_;J'.":_U:l: '

Now we give an example which shows that, although Theorem 3.1 cannot
be applied, we can apply Theorem 3.4,
Erample 4: Let f:[-1.1] = R* where

o x, xe[—1,0]
fi(x) { 0,z e]0,1]
and
0, = ¢ [—1,0]
fg I::L!] . ]j =1
-r, xE]0,1].

It is easy to check that f iz explicitly quasiconeave bulb it is not k-
strongly quasiconeave, for each & = 1,2, su that we are in the hypotheses of
Theorem 3.2.

Define the multichjective uptimization problem

(Mm*}.{ i l;"'[_—l Lfll .{-'r}.«f-.e[m}} — max
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Let w = (1,1) £ B® be a weight veclor. For the given problem [MOF), we
attach the scalar optimization problem

(£ {ee)) { I:l[;][:]_u'llllfl () + 1o fo (21 — max

where obaiosly

e —mos#£0
_t]'{-r.:l—{ é_, =1

Then we see that gy = —1 is o maxirmm puint of g on [-1, 1], and on
the Lasis of Proposition 3.3 we get that xy is also an efficient sululion of
the problem (M), which can be easily checked. But xy = 0 iz a local
maximum point of (P {w)). We cannot use Theorem 3.1 in this case, but
we can apply Theorem 3.2, which assures that x is an efficient solution of
{MOFP).
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