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Albwtract

The Dryvaamic Prograrmming (DE) s an old strategy thal has been
formalized for the lirst time in early fiflies 3], Sinee then, many appli-
eations of this generie method are constonlly developed |6, so thal it
ean be found in very dillerent forms. There is a well-known form of DI
which is largely used [or computations with graphs [7]. Within this
Iramework, DEF highly optimdse the computation of paths in graphs
Lhat maximize/minimize cerlain score Mnctions. Howeyver, some soor-
g luoclions prove to be too complicaled in order to e computed
wilh woly one DIY run, especially when Lhe score of one path depends
on the score of other patls thal sre not relaced. These [unctions are
specially useful n engincering and signal processing, and the exact
optimizatiom using DI proves o be expensive, Approgimation Lech
nicues, even if oflen succeesful, are less robust. Moo we present a
aotution to the problem of Loding paths optimizing normalised wosts
in Hidden Markov Models. Our solution is based ou u computation
mnplying a aimple and cheap P run sl cach step. The salution is
signeled by the eomvergenss of o seguence generated by these stops.
We prove Lhat the secuience converges always, The quick comvergere
obtained in procticsl applications ahows thal the alporithm can be
mech more efficient that the straightforward compatations with D

1 Introduction

Drvneunic Programming (1317 i a generic method thal was lirat formalated
by a mathematician called Richard Bellman i [2]. The method has many
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instantiations for dillerent Lypes of problems and is the subject of many
books [3, 6].

One form of Phnamic Programming |[7] allows Lhe compuatation of an op-
timal path in corlaim f._';l':-tl)!l.:—'\., between prodefined sets of nodes, This method
may be applicd as long as the cost function corresponds to the Bellman's
principle of oplinalicy [fi-

Definition 1 {Oplimality Principle) A functien f{C) defined on the da-
main of the pofhs in a graph corresponds Lo he optimatity prineiple iff,
Fa b, fwo nodes in the graph amnd of O is the pall befween them that mor
tizes the cost function f{C7), € — a3, @y, . 20, b}, then the paths O =
10, Ly, g L b oumed Oy {rg, g, B marimize the Junetion [ for oll he

palfa bedween a and @ respectively x; and & Wicl.n

The method of Dynamic Programming can [lind betwoeen whatever nodes
of the graph, the path thal. oplimiees the function [, DP does this by com-
puting iteratively the oplimal path known at each node @ toward cach node &
and visiting any of the neighbor nodes of o al which o palh to b was computed
T previons sLops.

For example let us imagine a net of roads Lhal can b represented with
a malrix where we have a Lown in cach odement of the matrix. The enlry
in cach town requires the paymenl of a certain toll and the road between
two towns has a known cosl as well, The access 15 possible only along Lhe
rowes and the coluroma. el ws wse DE to compute for this case Lhe oplonaed
path between the town in the left-down comer and the one o the right-up
corner. I the roads are allowed only from lefl Lo righl and upward, in that
case Lhe compuiation can be realized in only one iteration over all rows and
e |7

This solution has an application in the computation of an oplimal path
Uhrongh a Ihdden Markow Model (HMM) [L] cormesponding w a vector of
ohservations X . The last problem may be represcoted with & matrx where
each element of Lhe observation vector X corresponds Lo a columm and each
ol Lhe stales of the TIMM M corresponds o a row, The matric s illed with
the probability of the eorresponding tuples. The path in M that lils 1o X
with maximal probability can be obtaimed by 1M between the corner of the
makrix corresponding to the first element of X and firsl, state of A and the
corner corresponding to the last observalion, respectively the last slale.

(Hten we search for the path in A and the sub-sequence of X st cor-
respond optimally from all the possibilities. The score i provided by the
average emizsion probability along the best match. The exact choice may
be done by eomputing the probability of the optinal path m M for cach
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ambesegienes of X, that is for each acceptable pair of beginning and end
points in X, Bul this would require a high nmmber of muns of the DE al-
sorithm. We preseut an algorithm for the casier wael. computation of the
highest. probability and of the pair that corresponds Lo it,

2 Notations

= {@y, . n ] aml M has the states 0 — {91, g}, then we note
with M the HMM that extends AW with Lhe state gg, {ﬁtq-'&'l-. cers i ey |
and having the probability of transilion 1 between g and o, g, and g,
fe:, amed g, as well as between gy, and g, The emission probability in the
alades g (e, and rlrf,-?':l are: Lhe same for all observations and cgual with o
CorEEkak £,
We note with X* the subsequence X2 — [, ., 5) where 1 <a < b < N,
Ome approcimates often the log posterior of a model M gven a snbsequence
X5 with Lhe average posterior probability along the opfimal palh:

1
|r‘.' I ¥ [ S 1 | H _-'-!:
log P{M|X[) =k J]Et}él;tj log PG X))
1 O = s
= gy, (s Pleiae) — Xllog Pla"lz)
(1) +log Plg™ ¢} — log P(g°|x.) — log Plgalg®)}

where we have noted with @ = g% "', -, ¢° | one of the possible paths
of length ¢ 5| 1in M and the IIMM slale visited at time n along }, with
g e Q. i i sizuply used here as Lhe nop-emitting miial and [inal state of
M,

Vor & spovilic sub-sequence X7, expresdion (1) can easily be eslioated by
dymamic programiming sinee Lhe sub-sequence and he assowiated normalizing
fwcdor (e — b— 1) are given. However, we somelimes look for:

(2} S{M|X) - rrun — Loz PM X7

T'he optimal {hegin/end }points {57, !—:'}, andd Lhe associated optimal path €°,
are then given by:
. » v - 1 3 "y
(3) < Qb € == angmin ———— —log P[QIX])
' igaay bl
h—1 "-.'—nl-'

Q= 1g:. -ue.9", .;-’” i i r,-.u-} is the path thal extends ¢} with

h— 1 states g, belore g" a.n::l AN e ulales gs followang; ¢~.



[20

With these notations, the described method of Dvnaomic Progranuning
which looks [or Lhe oplimal pair belween a path Q2 in A and X compules:

t): = argmin — lug (0 X)
Y=h
h=1
= argmin {— ¥ _log Fge|a) — log M(q"|qe:)
S r—1

o1
- Z [Ing Fig"|r,) = log }"|:r_|l"+'|r;”:l1 log Py |x.}

!

(1] log Pl |97 ) — E log Plge|2a1}

=] 1

3 Tterative Dynamic Programming

€ do nol visil the state g between the observations & and ¢ and stays
only in this state olherwise, For shortening the notation m demeonstrations
WAL 1L

(5) w=S(M|X) = —log P(M|X5).

Proposition 1 4 palh E redurned by W DI wlgorillen for X and M is
completely determivecd iy the frsf and the last observations of ifs (} - nofed
b respectively e - Jor all compobctions (oll values of 20,

It mesns that for whatever two paths ., €).., oblained with Fgualion 4
for two different values of =, < and 25, if they have the same first and last
observation of their €. and €., &) = by and e; = &y, then Qi = Q-

Umnly the end states have different emission probabilities for dillerent, com-
pulations, as they depend on 2. Betwoen Lhe olservations with idices & and
e there i no end state g:. The minimal path s always the same between
indices b and &, while it s compuied wilh Lthe sane determimistic DE algo-
rithim, While, from the delinition of §), all the exterlor observations match
end states g, the resulls of the computations that have Lhe same b and o
represenl Lhe same path, We can therefore nole a palh a0 I order to
determine i, (1! is identical with Q.

Lemma 2 First, we show that if = = 2w, therne the D0 algorithm over X and
M ehovses the sequenee Q.
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Proof. We see that choosing €%, log £2{0°|X) — &+ w. Another path ¢
would have vieldod — log PIO|X) = New+(e— b+ s(w’ w) = N while
" o from the defimition of &7 (5 unigue ). Here we have noted by 6 e 0/
the values of the frsl Faome, Ll Ireone respectively average probability in
whatever path £ where (2 is an alleruative o 7,

w! = —logP{MIXE) log QXL

|
e—b+1
While: 1M choweses the optimamm {mindrmam ) it chooses (. =

W rowndl Lhial;

Proposition 3 Vs, if the resulting DF path over X and M is (. then w' =
— log M| X5,

The indices of the lirst and kel obeervations in () are nombered & and -
From the delinition of 7, the average probability on ¢, log S0 X,
' higher or equal with w,

(6] e

Ecpality appears when the path 07 15 not anigue.

Lemma 4 Ifs = w and the resultieg (0" path is O then the found sequence
will fry to profit more in fhe states of @

(7 et - <e—b
Prool.
g PO XN = +N -1 w8 —b +1)*w
We demonstrale Lhal the path * is better than any shorler one 0
g POE| X =B+ N -1 - r)ssL(e—b+1)=w
Il we assume Lhat G i chosen with
e

({e* — ) — {e — L)} = U w'l>w from the delimbion ofl Q. ¢ = w from
hvpothesis, Fherelore:

(e =8 41 rw = ([ =)= (e—Brz+ie btlj=w Tt =1
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i

We wet:
(N1 eeed (e* =0 Dxwa (b N—1—g)sc+(e—b+1)xu

showing that such a path @ wondld ol have been preferred to 0.
—» T'he ssmumiplion was wrong and the chosen € will have e* — < — 6,

Lemma 5 I = > w and the resulting DP path over X and M is 3. then
w = ]135 rr{ |'|i'|"';;::| ks

Proof.
—log P(Q|X)=(b Dyket{e—b1l=w | (N—g)s:
= — log P['ﬁ X} = (N—1-e+b)lact(e—54 1)wu
I Lhe Q‘: serquenes was not preferred then:

— log P(Q|X) = — log P(*| X))
(N—l—g+brztie— b+ Dsa'=(N - 1—e" 8 )" -+ 1)xw
e — &4 Ly=w<{N -1-e" +6)ect (e =0 +1}zw—(N-1 — el =
(] fe—b+Dxw'<{e" -0+ )ewt{le—0 —(e"—F))*z
While ¢ — b* + 1 = (0 and from the hvpothesis thal w2 2
(4] (e* =6 +llsw+{{e—b)—{e *))re<e—b+1]=:=
TFromn the inecualily 8 aaed 9

ie— b+ ]}#Tu' < le—6+1)*=
e—b+1>0=w <=

If €] was preferred, then again

'|'|'-"l Tl e

Theorem 6 The next algorithm called lerative Dynamic Programmang (THP
comgutes w oand 0° defined in the Fouations 5, 2 and 3.

1. 2= InitialValwe



4. = uw' 8§ >=DP(c)

G 4ff8I=8)
R L) cle
alfieruye
rrperd

Where:

NP,

i, Compute the path 57 wsing (0
2 w=—log P{M|X])

A refurn < w8 =

Proof. [rom Proposilion 3, alter the 2 step we have = = w. Prom Lemma
A, each harther eyvele of the alzorithm decresses <

Fromn Lemmma 2 and Lemma 5, mesalts Chat the convergence appear at
' =

While the mumber of possible palhs is lmiled, the algorithm is sure to
COLVETEE. :

If all the transition probabilities are 1, the value of converpenee ol = i
egmal with the geomelric average of the emission probabilities in Lhe optimal
pair hetween a palh in M and a subsequence of X.

Himilarly with Lemma 4 we ca show thal:

Lemma 7T [ =) = =5 then the sequence G-, i nol shorter then €.,

“UJ g — by <oy — Iy
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Proofl. While )., was preferred Lo f:?'_, for £ = =, it means Lhat:
S e N ) bl b 1) Sl e N ) ey — By 1]

{11} ,-:1[{;:.,_ By~ ey = W)) + ey by 4+ Dy e — By + Doy < 0

WU [or g2, 52 < 25, we would oblain Oy, with ez — s = &) — b, [z — ba)
fep — fy) = 0}, then by subtracting (=) — zgM{{eg — Be) — (e — B)) = 0 From
the first peart of the nequality 11 we obtain:

.'-i-'i:l:-eig—ll.;'g':'— e E110 1 I::-!:'_' — by ].:lﬂ.i'] — |:l!i‘g — by | Lhiwg < 0

showing Lhal €2, will slill be prelerred Lo 6. This s o contradiclion amd
we can infer that gp — by <le) — &y o

From the previows lemmas and from Lemma 5 we potice that at each
step hefore corvergence, the length of 0} decreases. "The nmber of steps i\
therclore roughly upper bounded by Y which 1= the same wath the number
aof DP rims needed in order to compate Lhe matehes for all che snbeeoguences

af X.

4  Conclusions

We havve present an algorithm consisting in the development of a sequencs:
comverging Loward an inleresting vadoue rom the point of view of the appli
ealiona. "The sequence s oonportant while in practical cases [1] it was found
Lhid Terr reswching convergence, much less compuatations are needed then by
msing Lhe standard known method,
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