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A TOPOLOGICAL DEGREE FOR A*-PROPER MAPPINGS
ACTING FROM A BANACH SPACE INTO ITS DUAL

Cristinel MORTICI

Abstract. In this paper we define a topologeal degree for a class of operators
X = X*® | where X 15 g scparable Banach space. This class generalizes the
class of mappings of type { 8, ). We deline a projectionally complete scheme for
[ X, X*) We use the Browder-Petryshyvn method and Galerkin approximations

L INTRODUCTION

Definition 1. Let X and Y be two separable Banach spaces,
([ Xndae v . { Yahen be two mereasing sequences of finite dimensional subspaces
of X, respectively Y and P: X — X,, Q- Y= Y, ncN linear and continuous
projections. Then T':= { X, P,. Y., Q. }is a projectionally complete scheme
for (X, Y ) il dim X,=dim Y, Px—»xin X and Qv »v
m Y, for each xc X, v Y.

Let us consider a Banach space X such that X and X* are separable. We
suppose that there exists an increasing sequence { X, by, e~ of finite dimensional
subspaces of X and let P, X »X,, be the corresponding projections,

We deline P*: X*— X, * by
(1) RO R ISR Y Ae R Re

We pve the Tollowing:

Lemma 1. 1'={ X, P, X,*. P,* }is a projectionally complete scheme for
[ X.X*),

Indeed, it results from (1) that P, * are linear, continuous and idempotent,

Example, [f X has complete svstem of linear independent elements
( Schauder basis) denoted by { e, €., ..., e,.... }. then it can be chosen

Xai=spf{ €1, ex..... €, vand for x= 3 xe, define Ppx=% xe,
1= Lol

Definition 2. An application T: D = X —»X* is (weak) A*-proper with
respect the scheme I'={ X,, P, X;*. P,* } if the restrictions T,= P.*
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T: X »X.* are continuous lor cach nc N and if ', is a subscheme of T and
B B e 115 a bounded sequence with Tu(X,) »gin X*, then there
exist 4 subsequence { X; }={ %, }and xe 11 such that x; % ( respectively
X; X )in X and T(x)—g

Lemma 2, I Do X is a bounded, openand T: D »X* is continuous
and A*-proper, then T is proper, in particular T is a closed operator.

Proof. Let K=X* be compact, M—D be closed and {x,}cM~T{K).
T 15 a continuous and 1" is a projectionally complete scheme, so far each k= 1

and & = ;Ir , there exist n{k}= N, n{k)=k such thai

| XkZuk | “H k. Zamy™ Puio Xke Xk 2
and | T(x)  T{zaw) |2 e, fork— «.
Then Py *(T(Zg,0) »2 and becanse T 15 A-proper, there exist g
subsequence{ zy; 1= { Zyy, ) such that zy;—x in X and T(x)=g. Finally x; ,x
in X. that is M~ T (K) is compact.

Lemma 3. If T: 0 = X X* is A*-proper and p= X*-T( 217), then there
exist ng= 1 and b=0 such that | Ta(x,) — Po*p || 2b, ¥ Xae 8Dy, nzng, where
D=Pu D).

Prool. 13, - &1, & and Py )15 closed, Therefore 2D, Py(2D). Let
us suppose that there exist £; 0, #;=0 and a sequence { x;/ ;< #D; } such
that | Ti(x;) P*p | <=, Now we can choose a subsequence { x, b { x; }
and xc D wath Pix; wx m X and T(x}=p, because T 15 A-proper. But
Pixi = D — A — x = &, contradiction.

The class of A*-proper operators is larger then some classes of mappings
of monolone type. We say that T:X —» X* is of class (8.) if for each sequence
| %0 Yo X withx, yx and limsap{ T(xn) — T(x), xp - x j =0 it results 3, ,x

Thearem 1. dAssume that X is a reflexive Banach space. Then each
operator 1: D = X » X* of ype (5-) 1s A*-proper.

Proof, Let {x, /%, X,} be a bounded sequence such that T,(x,)—»g We
can suppose that x;, - x because X 1s reflexive. Then { Tix), x, -x ) =0 and
from T(x,) »g and x, —x it results { T(x,), X, - x } =0,

Henee lim sup{ T(x,)— T{x), %, -x )~0and x, ,x, because T is of type
(S.). From the contimuty of T 1t results T(x)—g. which means that T is
A*-proper map.

Let us consider a Banach space X such that X and X* are separable. Let
T={Xp, P, X.*, P,*} be a projectionally complete scheme and T: D e ¥ — X ¥
be an A-proper map. We denote 2 =Py [0} and supposc that I 1s open and
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bounded, for every ne N If pe T( &2 ) there exist no such that P *pe Tl o),
Wz ng, where T=P¥1: X, = Xo ¥, T, are continuous, so we can consider the
sequence {d,} —=Z, where d, ;= d(T,, Dy, P,*p) 15 the Browner topological
depree, which is well defined for n=n, because Po*pe Ty 2 D,) as we can see
from lemma 3.

Definition 3. We define the generahized topological degree of the A*-
proper map T in p relative to D, with respect to scheme T, be the next subset
of

F=Zui+xl

DHT.Dpr={dcZ / 3 {di} = {dnj. di»d }

2. THE PROPERTIES OF DEGREE FOR A*-PROPER MAPS

( I){ The solution propriety ). If D* (T, D, p )= {0} then the eqoation
Tix)=p has solutions in D.

Proof. There exists a sequence {d;} with di=d( T;, D;. P;*p)+ 0. From the
propertis of Brouwer degree there exists x,2 13, such that Ti(x)=P*
But P* p— p = Ti(x;) »p and we can choose a subscquence {x] o [x] wilh
X »Xe 2 and T{xp. because T is A-proper, Moreover, x = 1) because
pg T(a).

( I1 ¥ { The invariance to homotopy ). Let H: 0 «Jo,1] » X * be continuous
in 1, uniformly in < 73 such that H(, ) is A*-proper, v e [0]].

If pecX*-H{an [o1] ) then p*(#(.rL 2, p ) is independent in r < [0,1]
and consequence.

Proof, De(#(.0) 0, p ) is well defined for each /< [0.1] because
pe i, kaD). Let us suppose that for n=n, we have Py peH(-1) (#Dy) so
di P.*H(,¢), 1, Pu*p) is well defined for n=ny and independent in ¢ < [0,1]
and consequently 2 *(#7(.¢) 2. p ) is independent in ¢ = [0.1].
In particular the degree for A*-proper maps 15 independent under
translations.

( 111 } { Continnty with respect the function ). There exastr=n T, p } =
0 such that D* T, D, py= D¥ S, D, p) for every A®-proper map S with
supi7(x) Slx)/xe D}‘f—l’.

Proof. For some ng we have | To(x)  Pp*(x)p |=b, vxe Dy, nzny.

Ifr< " wherea=sup{| P.*x |, n=N}, we define
4]
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Ho( 5 )= Ta(x) + t{ Tu(x)—Sy(x))and | Hi(t,x) |=b ar>=0, so
d( T.. Dy, P*p) = d { S,,10, Pu*p) vnzng which is D¥( T, D, p) =D* S, D, p).

( IV ) (Continuity with respect the pont), For p, g in the same conex
connected set of ¥ #-7(éD) we have D* T, D, p) =D*( T, D, q).

Proof. There exists ¢: [0.1] > X *-T(a0) continuous, ¢(0) = p, ¢(1) - q.
The conclusion follows from the invanance of the degree to the homotopy

H{.t)=T —clz).

( ¥ ). { The additivity with respect the domain ) Let D', D" be apen,

bounded, £ 0 ¥, DDV LR D D Zd and pe T(ED Lap’).
Then D*(T.D.p)c D10 p)+=r.0" . p).

Proof, /" pg 160 Lani Lt -2 =@, vn=n,,
Then from the additivity of the Brouwer degree with respect the domain, we
have d, = dl1,.D,. 2 pl=d' +d?, where & —dfr, D Fp), i=1,2.
Ifde(r.npythenletd, »d.

Case 1. If u’ —keZ then .:4'_;* el — =y e I.?'{T, I?",p} and sod =k | m,
with & e 0°(7, 17, pl mey{r o, pl.

Case 2, I} — a0 and | <=, then o} — Feand

d = ==(F =) ﬂ'{T,D' ; p}+ I‘J'{T,IJI, p}, by convention.

Case 3. Il ¢, — t= and o = +=, then o} —m With |m| <= or m - 12 and

de (.0, p)-(r.00,p).

{ V1) ( Dependence from the values on the border ). If F.5: 0 » X are
A'-proper maps with T = S on ap and p e 1{20), then
DT, D, p=DS.D.p.
Indeed, 1t results from the invariance to linear homotopy A1) = {(1— )7 + 5.
Finally we pfive an result analogue to Borsuk theorem:

Theorem 2. Assume that D= X is a symmetric domain, 0c D and
T D X' as A -proper, odd and 0 ¢ 1{20). Then D' T, D, 0) contains only
odd integers, eventually 1«

Indeed, il & « 1 (r,00),4 < Z, then let 4, - d.d, =d(7,D,.0) and the
conclusion follows from the fact that d; are odd, according 1o Borsuk theorem
for Brouwer degree,
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