Dedicated to Professor Ion PAVALOIU on his 60th anniversary

A TOPOLOGICAL DEGREE FOR A*-PROPER MAPPINGS ACTING FROM A BANACH SPACE INTO ITS DUAL

Cristinel MORTICI

Abstract. In this paper we define a topological degree for a class of operators $T: X \to X^*$, where X is a separable Banach space. This class generalizes the class of mappings of type (S1). We define a projectionally complete scheme for (X, X*). We use the Browder-Petryshyn method and Galerkin approximations.

1. INTRODUCTION

Definition 1. Let X and Y be two separable Banach spaces. $(X_n)_{n \in \mathbb{N}}$, $(Y_n)_{n \in \mathbb{N}}$ be two increasing sequences of finite dimensional subspaces of X, respectively Y and $P_n: X \to X_n$, $Q_n: Y \to Y_n$, $n \in \mathbb{N}$ linear and continuous projections. Then $\Gamma := \{ X_n, P_n, Y_n, Q_n \}$ is a projectionally complete scheme for (X, Y) if dim $X_n = \dim Y_n$, $P_n x \to x$ in X and $Q_n y \to y$ in Y, for each $x \in X$, $y \in Y$.

Let us consider a Banach space X such that X and X* are separable. We suppose that there exists an increasing sequence (Xn)neN of finite dimensional subspaces of X and let $P_n: X \to X_n$ be the corresponding projections. We define $P_n^*: X^* \to X_n^*$ by $\langle P_n^* x^*, x \rangle = \langle x^*, x \rangle, x^* \in X^*, x \in X_n.$

$$(1) \qquad \langle P_n^* x^*, x \rangle = \langle x^*, x \rangle, x^* \in X^*, x \in X_n.$$

We give the following:

Lemma 1. $\Gamma = \{ X_n, P_n, X_n^*, P_n^* \}$ is a projectionally complete scheme for (X,X*).

Indeed, it results from (1) that P_n* are linear, continuous and idempotent.

Example. If X has complete system of linear independent elements (Schauder basis) denoted by { e1, e2, ..., en, ... }, then it can be chosen

$$X_n = sp\{e_1, e_2, \dots, e_n\}$$
 and for $x = \sum_{i=1}^n x_j e_j$, define $P_n x = \sum_{i=1}^n x_j e_j$.

Definition 2. An application $T: \overline{D} \subset X \to X^*$ is (weak) A^* -proper with respect the scheme $\Gamma = \{ X_n, P_n, X_n^*, P_n^* \}$ if the restrictions $T_n = P_n^*$

T: $X \to X_n^*$ are continuous for each $n \in N$ and if Γ_m is a subscheme of Γ and $\{x_m \, / \, x_m \in \overline{D} \cap X_m \}$ is a bounded sequence with $T_m(X_m) \to g$ in X^* , then there exist a subsequence $\{x_i\} \subset \{x_m \}$ and $x \in \overline{D}$ such that $x_i \to x$ (respectively $x_i \to x$) in X and T(x) = g.

Lemma 2. If $D \subseteq X$ is a bounded, open and $T: \overline{D} \to X^*$ is continuous and A^* -proper, then T is proper, in particular T is a closed operator.

Proof. Let $K \subset X^*$ be compact, $M \subset D$ be closed and $\{x_k\} \subset M \cap T^{-1}(K)$. T is a continuous and Γ is a projectionally complete scheme, so far each $k \ge 1$ and $\delta_k := \frac{1}{k}$, there exist $n(k) \in \mathbb{N}$, n(k) > k such that

Then $P_{n(k)}*(T(z_{n(k)})) \rightarrow g$ and because T is A-proper, there exist a subsequence $\{z_{n(i)}\} \le \{z_{n(k)}\}$ such that $z_{n(i)} \rightarrow x$ in X and T(x)=g. Finally $x_i \rightarrow x$ in X, that is $M \cap T^{-1}(K)$ is compact.

Lemma 3. If T: $\overline{D} \subset X \to X^*$ is A*-proper and $p \in X^*$ -T(∂D), then there exist $n_0 \ge 1$ and b>0 such that $\| T_n(x_n) - P_n^* p \| \ge b$, $\forall x_n \in \partial D_n$, $n \ge n_0$, where $\overline{D}_n = P_n(\overline{D})$.

Proof. $D_n \cap \partial D_n = \emptyset$ and $P_n(\overline{D})$ is closed. Therefore $\partial D_n \subseteq P_n(\partial D)$. Let us suppose that there exist $\varepsilon_j \to 0$, $\varepsilon_j \ge 0$ and a sequence $\{ x_j \mid_{j \in \partial D_j} \}$ such that $\| T_j(x_j) - P_j^* p \| \le \varepsilon_j$. Now we can choose a subsequence $\{ x_i \} \subseteq \{ x_j \}$ and $x \in D$ with $P_i x_i \to x$ in X and T(x) = p, because T is A-proper. But $P_i x_i \in \partial D_i \subset \partial D \Rightarrow x \in \partial D$, contradiction.

The class of A*-proper operators is larger then some classes of mappings of monotone type. We say that $T:X\to X^*$ is of class (S_+) if for each sequence $\{x_n\}\subset X$ with $x_n\to x$ and $\limsup \langle T(x_n)-T(x),x_n-x\rangle \leq 0$ it results $x_n\to x$.

Theorem 1, Assume that X is a reflexive Banach space. Then each operator T: $\overline{D} \subset X \to X^*$ of type (S_+) is A^* -proper.

Proof. Let $\{x_n \mid x_n \in X_n\}$ be a bounded sequence such that $T_n(x_n) \to g$. We can suppose that $x_n \to x$ because X is reflexive. Then $\langle T(x), x_n - x \rangle \to 0$ and from $T(x_n) \to g$ and $x_n \to x$ it results $\langle T(x_n), x_n - x \rangle \to 0$.

Hence $\limsup \langle T(x_n) - T(x), x_n - x \rangle = 0$ and $x_n \to x$, because T is of type (S₊). From the continuity of T it results T(x) = g, which means that T is A*-proper map.

Let us consider a Banach space X such that X and X* are separable. Let $\Gamma = \{X_n, P_n, X_n^*, P_n^*\}$ be a projectionally complete scheme and $T: \overline{D} \subset X \to X^*$ be an A-proper map. We denote $\overline{D}_n = P_n(\overline{D})$ and suppose that D_n is open and

bounded, for every $n \in N$. If $p \notin T(\partial D)$ there exist no such that $P_n * p \notin T_n(\partial D)$, $\forall \, n \geq n_0$, where $T_n = P_n * T : X_n \to X_n *$. T_n are continuous, so we can consider the sequence $\{d_n\} \subset \mathbb{Z}$, where $d_n := d(T_n, D_n, P_n * p)$ is the Browner topological degree, which is well defined for $n \geq n_0$ because $P_n * p \notin T_n(\partial D_n)$ as we can see from lemma 3.

Definition 3. We define the generalized topological degree of the A*proper map T in p relative to D, with respect to scheme Γ , be the next subset
of

$$\overline{Z} = Z \cup \{\pm \infty\}.$$

D*(T,D,p):={ d \in \overline{Z} / \Beta \{d_i\} \subseteq \{d_n\}, d_i \rightarrow d\}

2. THE PROPERTIES OF DEGREE FOR A*-PROPER MAPS

(I) (The solution propriety). If $D^*(T, D, p) \neq \{0\}$ then the equation T(x)=p has solutions in D.

Proof. There exists a sequence $\{d_i\}$ with $d_i=d(T_i, D_i, P_i^*p) \neq 0$. From the propertis of Brouwer degree there exists $x_i \in D_i$ such that $T_i(x_i)=P_i^*$ But $P_i^*p \to p \Rightarrow T_i(x_i) \to p$ and we can choose a subsequence $\{x_j\} \subset \{x_i\}$ with $x_j \to x \in \overline{D}$ and T(x)=p, because T is A-proper. Moreover, $x \in D$ because $p \notin T(\partial D)$.

(II) (The invariance to homotopy). Let $H: \overline{D} \times [0,1] \to X^*$ be continuous in t, uniformly in $x \in \overline{D}$ such that $H(\cdot,t)$ is A^* -proper, $\forall t \in [0,1]$.

If $p \in X^* - H(\partial D, [0,1])$ then $D^*(H(\cdot,t), D, p)$ is independent in $t \in [0,1]$ and consequence.

Proof. $D * (H(\cdot,t),D,p)$ is well defined for each $t \in [0,1]$ because $p \notin H(\cdot,t)(\partial D)$. Let us suppose that for $n \ge n_0$ we have $P_n * p \notin H(\cdot,t)$ (∂D_n) so $d(P_n * H(\cdot,t), D_n, P_n * p)$ is well defined for $n \ge n_0$ and independent in $t \in [0,1]$ and consequently $D * (H(\cdot,t),D,p)$ is independent in $t \in [0,1]$.

In particular the degree for A*-proper maps is independent under translations.

(III) (Continuity with respect the function). There exist r = r(T, p) > 0 such that $D^*(T, D, p) = D^*(S, D, p)$ for every A^* -proper map S with $\sup \{|T(x) - S(x)| / x \in \overline{D}\} < r$.

Proof. For some n_0 we have $\|T_n(x) - P_n^*(x)p\| \ge b$, $\forall x \in \partial D_n$, $n \ge n_0$. If $r < \frac{b}{a}$, where $a = \sup\{\|P_n^*x\|, n \in \mathbb{N}\}$, we define

 $H_n(t, x) = T_n(x) + t (T_n(x) - S_n(x))$ and $||H_n(t, x)|| \ge b - ar \ge 0$, so $d(T_n, D_n, P_n p) = d(S_n, D_n, P_n p) \lor n \ge n_0$ which is $D^*(T, D, p) = D^*(S, D, p)$.

(IV) (Continuity with respect the point). For p, q in the same conex connected set of $X * -T(\partial D)$ we have D*(T, D, p) = D*(T, D, q).

Proof. There exists $c:[0,1] \to X^* - T(\partial D)$ continuous, c(0) = p, c(1) = q. The conclusion follows from the invariance of the degree to the homotopy $H(\cdot,t) = T - c(t)$.

(V). (The additivity with respect the domain) Let D^1 , D^2 be open, bounded, $D \supset D^1 \cup D^2$, $\overline{D} = \overline{D^1} \cup \overline{D^2}$, $D^1 \cap D^2 = \Phi$ and $p \notin T(\partial D^1 \cup \partial D^2)$.

Then $D*(T,D,p) \subseteq D*(T,D^1,p) + *(T,D^2,p)$.

Proof. $P_n^* p \notin T(\partial D_n^1 \cup \partial D_n^2), D_n^1 \cap D_n^2 = \Phi, \forall n \ge n_0$.

Then from the additivity of the Brouwer degree with respect the domain, we have $d_n := d(T_n, D_n, P_n^*p) = d_n^1 + d_n^2$, where $d_n^i = d(T_n, D_n^i, P_n^ip)$, i = 1, 2. If $d \in D^*(T, D, p)$ then let $d_n \to d$.

Case 1. If $d'_j = k \in \mathbb{Z}$ then $d^2_j \to d - k = m \in D^*(T, D^2, p)$ and so d = k + m, with $k \in D^*(T, D^1, p)$, $m \in D^*(T, D^1, p)$.

Case 2. If $d_j^1 \to \pm \infty$ and $|d| < \infty$, then $d_j^2 \to \mp \infty$ and $d = \pm \infty (\mp \infty) \in D^*(T, D^1, p) + D^*(T, D^2, p)$, by convention.

Case 3. If $d_j^1 \to \pm \infty$ and $d = \pm \infty$, then $d_j^2 \to m$ with $|m| < \infty$ or $m = \pm \infty$ and $d \in D^*(T, D^1, p) + D^*(T, D^2, p)$.

(VI) (Dependence from the values on the border). If T,S:D→X* are A*-proper maps with T = S on ∂D and p ≠ T(∂D), then D*(T,D,p) = D*(S,D,p).

Indeed, it results from the invariance to linear homotopy $H(\cdot,t) = (1-t)T + tS$.

Finally we give an result analogue to Borsuk theorem:

Theorem 2. Assume that $D \subset X$ is a symmetric domain, $0 \in D$ and $T : \overline{D} \to X^*$ is A^* -proper, odd and $0 \notin T(\partial D)$. Then $D^*(T, D, 0)$ contains only odd integers, eventually $\pm \infty$.

Indeed, if $d \in D^*(T, D, 0)$, $d \in \mathbb{Z}$, then let $d_i \to d$, $d_i = d(T_i, D_i, 0)$ and the conclusion follows from the fact that d_i are odd, according to Borsuk theorem for Brouwer degree.

REFERENCES

- H. Amann, Ljusternik, Schnirelmann theory and nonlinear eigenvalue problems, Math. Ann., 119(1972), 55-72.
- I. Berkowitz, V. Mustonen, Some results on mappings of monotone type, Proc. Conf. on Diff. Eq., Ohio Univ., vol 1, 61-68, 1989
- I. Berkowitz, V. Mustonen, An extension of Leray- Schauder degree and applications to nonlinear wave equations, Diff. and Integr. Eq., 3 (1990), 945-965.
- 4. I. Berkowitz, V. Mustonen, Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems
- F. E. Browder, Nonlinear Eigenvalue Problems and Galerkin Approximations, Bull AMS, 74 (1968), 651-656.
- F. E. Browder, Degree Theory for nonlinear mappings, Proc. Symp. Pure Math., 45, Part. 1, 203-226, AMS, Providence, 1986
- 7. K. Deimling, Nonlinear Functional Analysis, Springer Verlag, Berlin, 1985
- I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Clarendon Press, Oxford, New York, 1995.
- A. Kittilä, On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear eliptic problems, Ann. Acad. Sci. Fenn. Ser. A, Math. Dissertationes, 91 (1994)
- 10. I. Mawhin, Nonlinear functional analysis and periodic solutions of semilinear equations in nonlinear Phenomena in Mathematical Sciences, 671-681, (V. Lakshmikantam, ed.), Academic Press, 1982
- 11 D. Pascali, Approximation- Solvability of a semilinear wave equation, Libertas Math., 4 (1984), 73-79
- D. Pascali, S. Sburlan, Nonlinear mappings of Monotone Type, Sijthoff-Noordhoff Intern. Publ., Alphen aan den Rijn, 1978
- W.V. Petryshyn, Generalized Topological Degree and Semilinear Equations, Cambridge Univ. Press, Cambridge, 1995

- S. Sburlan, Gradul Topologic. Lecții asupra ecuațiilor neliniare, Ed. Academiei, București, 1983
- V.I. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Transl. Math. Monographs 139, AMS, 1994
- E. Zeider, Nonlinear Functional Analysis and its Applications, Springer Verlag, New York, 1990

Received: 13.01.1999

Ovidius University Dept. of Mathematics Bd. Mamaia 124 8700 CONSTANȚA ROMANIA