Bul. Ştiinţ. Univ. Baia Mare, Ser. B,

Matematică-Informatică, Vol. XVII(2001), Nr.1-2, 23-32

TOPOLOGICAL MANIFOLDS WITH A L_p STRUCTURE Daniel BREAZ, Nicoleta BREAZ

Abstract. In this paper we present the topological manifolds with L_p structure. We describe the riemannian structure which determine the Hilbert-space, and prove some interesting properties. Finnally it is presented an example for this manifolds

MSC: 55R35, 57R15

Keywords: varieties, measurable, fibrat, homeomorphism, differentiable.

Definition 1: A Riemmanian structure g on U is a measurable function of Lebesgue class and theirs values are in the set of R^n Euclidian structures. Such a structure determines a $\Omega^k(U,g)$ Hilbert space formed of ω complex, measurable differential forms of Lebesgue class, of k degree that verify the relation:

 $\|\omega\|_g^2 = \int_U \lambda^k(g)(\omega,\omega)\mu_g < +\infty$, where $\lambda^k(g)$, (and μ_g) describes a quadric associated in a canonical way to g on $\Lambda_c^k(T^*U)$. We define $\tau: U \to L(\Lambda_c(R^{n_*}))$ de Hodge

involution field determined by $g: \tau \omega = \begin{cases} i^{p(p-1)+m} * \omega, & \text{if } n = 2k \\ i^{p(p+1)+m+1} * \omega, & \text{if } n = 2k-1 \end{cases}$ where p is the

degree of ω , and * is the unitary field determined by $x \in U$.

Definition 2: Let R (U) is an ensemble of Riemmanian structures g on U, which exists for k=m, m+1, and $1 \le q_k \le 2 \le p_k < +\infty$, real, B > 1 satisfying the next relations:

(1)
$$L^{p_k}(U, \Lambda_C^k(T^*U)) \subset \Omega^k(U, g) \subset L^{q_k}(U, \Lambda_C^k(T^*U))$$

(2)
$$\frac{1}{p_m} + \frac{1}{n} > \frac{1}{q_m + 1}$$

Lemma 3: Let p, q and N >n real positive so that $p^{-1}+q^{-1}=1$ and $p^{-1}+N^{-1}=q^{-1}$ and let $n_o=nN(N-n)^{-1}$. Whatever $\xi\in L^a(V,\Lambda_c(T^*V))$, $\delta_o(P_o+\Delta_o)^{-1}\xi$ belongs to $L^p(V,\Lambda_c(T^*V))$. The defined application is continuous and belongs to $L^{r_o+}(L^q(V,\Lambda_c(T^*V)),L^p(V,\Lambda_c(T^*V)))$. Let $\theta:U\to W$ an homeomorphism derivable on opened from \mathbb{R}^n , whose derivate θ' belongs to $L^p(U,End(\mathbb{R}^n))$ for $p\geq 1$. We allege then that θ is derivable of p degree. Taking into consideration a theorem of Y. Reshetnyak in [9], an homeomorphism like that preserves the class of measure Lebesque, and its derivate operates on measurable sections of tangent fibrate.

Definition 4: A topological variety is called derivable of p degree if the map transformations associated to its atlas are derivable of p degree.

It is possible then to define Riemmanian structures on V and the Hilbert space of the differentiable forms measurable on V of k degree and of square incorporable on a g structure which will be written down with $\Omega^k(V,g)$. Let a covering $O=(O_t)_{i\in I}$ of the open maps $\theta:O_t\to U\subset R^n$ we will jot down with R(O) the Riemannian structures g where g_i notes the images on U_i of the g restrictions at O_i with $g_i\in R(U_i)$ and we will put $n(g)=\sup_i n(g_i)$. Let $B(O)\subset C(V)$ the dense subalgebra generated by subalgebras $C_e^m(U_i)$ pentru $i\in I$ i.e generated by the elements as $f=f_1+f_2+...+f_N$, unde $f_i\in C_e^m(U_i)$.

If $g \in R(O)$, taking into consideration the relation (3) from the definition no. 2 we will demonstrate that the subspace generated by the union $C_o(U_i, \Lambda_C^k(T^*U_i))$ is a dense subspace of $\Omega^k(V, g)$. Thus the space R(O) becomes a metrizable space for a family of semi-metrics determined by positive functions:

 $g\mapsto \|\omega\|_g^2$; $g\mapsto p_k(g_i)$; $g\mapsto q_k\left(g_i\right)$ where ω traverse the union $C_o\left(U_i, \Lambda_C^k\left(T^*U_i\right)\right)$ and $p_k(g_i)$ (and $q_k(g_i)$), for $k=m,\ m+1$ is the smallest (respective the highest) real number for which the inclusions from the definition no. 2 are verified on U_i .

Proof: This result is a consequence of the complex interpolation. Let U an opened relatively compact from R^n , $\operatorname{si} g_a, g_1$ two elements from R(U), $p_k^0, p_k^1, q_k^0, q_k^1$, associated real numbers, which verify the condition (1) from the definition no 2. There is a continuous inclusion of $\Omega(U,g_i)$, (i-0,1) in $L^p(U,\Lambda_C(T^*U))$ with $q=\min(q_0,q_1)$ so we may apply the complex interpolation to the spaces couple Hilbert $\Omega^*(U,g_0),\Omega(U,g_1)$.

For $X \in \mathbb{R}^n$, notam < X, X > the standard Euclidian scalar product, and for i = 0 and i = l let $x \mapsto A_i(x)$ a measurable field on U of positive matrices for any $X \in \mathbb{R}^n$, for which we have equality almost everywhere in Lebesgue measure, $g_i(x)(X,X) = < A_i(x)X, X >$.

Let
$$t \in [0,1]: A_t = A_0^{1/2} \left(A_0^{-1/2} A_t A_0^{-1/2} \right)^t A_0^{1/2}$$

Then we have a canonical identification of $(\Omega^k(U, g_0), \Omega^k(U, g_1))_t$ cu $\Omega(U, g_1)$, where $g_t(x)(X, X) = \langle A_t(x)X, X \rangle$. For $\omega \in C^\infty(U, \Lambda_C^k(R^{n,*}))$ we have indeed for $t \in [0,1]$, $\|\omega\|_{g_t}^2 = \int_U \langle \lambda^k(A_t^{-1}(x))\omega, \omega \rangle \sqrt{\det(A_t(x))}dx$.

When applying the method from ([3], cap 5) we have in a canonical mode for ω of k degree, that the norm on $(\Omega^*(U,g_0),\Omega^*(U,g_1))$ is given by :

$$\int_{U} \langle B_{t}(x)\omega(x),\omega(x) \rangle dx, \text{ where}$$

$$B_{t} = \lambda^{k} (A_{0})^{-1/2} \left(\lambda^{k} (A_{0})^{1/2} \lambda^{k} (A_{1}^{-1}) \lambda^{k} (A_{0})^{1/2}\right)^{k} \lambda^{k} (A_{0})^{-1/2} \det \left(A_{0}(x)^{l-1} A_{1}(x)^{l}\right)^{l/2}, \text{ i.e.}$$

$$B_{t} = \lambda^{k} \left(A_{t}^{-1}\right) \sqrt{\det (A_{t}(x))}.$$

The relations from the definition no 2 are being satisfied for g(t) with:

$$\frac{1}{p_k(t)} = \frac{t}{p_k^0} + \frac{1-t}{p_k^1}, \qquad \frac{1}{q_k(t)} = \frac{t}{q_k^0} + \frac{1-t}{q_k^1}$$

The application $t \mapsto g(t)$ is also continuous.

Obsevation 6. The operator $A_t = A_0^{1/2} \left(A_0^{-1/2} A_t A_0^{-1/2} \right)^t A_0^{1/2}$, pt. $t \in [0,1]$ is a particular case of the notion of linear positive mediation operator, introduced by T. Audo and F Kubo [1].

Observation 7. Let $f:Z\to R(O)$ a continuous application. On the field $\varepsilon=(\Omega(V,f(t)))_{t\in Z}$ there is a unique field structure generated continually by the sections ω , $\omega\in \Sigma C_n(U_i,\Lambda_c^k(T^*U_i))$. So we have on $\mathcal E$ a structure of $C_n(Z)$ - the canonical Hilbertian mode associated to f.

Also we fix a covering O of V, an element $g \in R(O)$, and let m the whole part of $\frac{n}{2}$. We will begin by defining:

 $d: \Omega^k(V,g) \to \Omega^{k+1}(V,g)$ Let $\omega \in \Omega^k$ and ω_i the image in U_i of its restriction at O_i .

We will say that $\omega \in \text{dom} d$ if $(\forall)i$, $\omega_i \in \text{dom} d_{U_i} \subset \Omega^{k+1}(U_i, g_i)$ and we define then $d\omega$ provided that $d\omega$ restriction at U_i is equal to $d_{U_i}\omega_i$. The next lemma demonstrates us that this definition makes sense and d is a dens domain.

Lemma 8. Let U and W two opens from R'' si $\theta: U \to W$ a derivable homeomorphism of $p \ge m+1$ degree and $g_1 \in R(U), g_2 \in R(W)$ Riemannian structures so that $\theta^*(g_2) = g_1$ and $\alpha \in \Omega^k(W_{1,2})$, so that $d_{W''} \in \Omega^{k+1}$. The next properties are true for k-m-1, m, if m is even and for k=m, if m is odd.

- 1) Thus there is $\beta_n \in C_c^\infty(\mathbb{R}^n, \Lambda^k(T^*\mathbb{R}^{n,*}))$, so that if α_n is the restriction of β_n la W, then $\lim \alpha_n = \alpha$ and $\lim d_{w^{\alpha_n}} = d_{w^{\alpha_n}}$
- 2) $\theta^*(\alpha) \in \text{dom } d_U \subset \Omega(U, g_1) \text{ and } d_U \theta^*(\alpha) = \theta^*(d_{g_1 \alpha})$

Proof: Supposing that n is odd. If α support is compact in W then 1) is being reduced to the tor case. The general case is being deduced from transpositions. To demonstrate 2), it is sufficient to presume that α is the restriction at W of $\beta \in C_c^{\infty}(\mathbb{R}^n, \Lambda^k(T^*\mathbb{R}^{n,*}))$, because d is closed. For a smuch $\theta' \in L^p$ cu $p \ge m+1$, the differential forms $\theta^*(\alpha)$ si $\theta^*(d\alpha)$ are from L^1 .

Also let $\theta_{\varepsilon}: U \to R^n$ smooth applications (C^{ε}) (not necessarily bijective) that converge uniform towards θ and whose derivates θ'_{ε} converge towards θ' in L^p . For $\xi \in C^{\infty}_{\varepsilon}(U, \Lambda^m(T^*U))$, the following equality is true:

$$\int_{U} \theta^{*}(\alpha) \Lambda d\xi = \lim_{\varepsilon} \int_{U} \theta_{\varepsilon}^{*}(\beta) \Lambda d\xi = \lim_{\varepsilon} (-1)^{m-1} \int_{U} \theta_{\lambda}^{*}(d\beta) \Lambda \xi = (-1)^{m-1} \int_{U} \theta^{*}(d\alpha) \Lambda \xi.$$

For the next theorem we will consider the next conditions:

V- is a an oriented compact variety of n dimension, which allows a derivable structure of m+1 degree, so that for all finite coverings of open maps $\theta_i: O_i \to U_i$ the space R(O) is non- empty. For this variety we will be able to construct an analytical operator (if not taking into consideration an omotopy).

Theorem 9. With the previous hypothesis, let a coverage O of V and $g \in R(O)$.

If n is odd, the operator D = ud on $\Omega^{m}(V, g)$ is defined densely, closed, auto adjunct and has a resolvent on its support in $L^{n(g)+}$.

If n is even, the operator $D=d+d^*$ from $\Omega^m(V,g)$ in $\Omega^{m-1}(V,g)\oplus\Omega^{m-1}(V,g)$ is densely defined, closed, uncommutative vis a vis T and has a resolvent in $L^{n(g)^n}$. Whatever n parity, for all $f\in\beta(O)$, the commutator [D,f] is defined densely and edged (limited). The D operator is unique if not taking into consideration an omotopy. The last part of the theorem, for example in the even case, if O_1 is on the other hand a coverage of the open maps of V and $g_1\in R(O_1)$ there is also a continuous field ε of Hilbert spaces on [0,1], so that $\varepsilon_0=\Omega^m(V,g), \ \varepsilon_1=\Omega^m(V,g_1)$ and a family of continuous autoadjunct operators D on ε , a resolvent in the ideal of compact operators of Hilbertian module, so that $D_0=D,\ D_1=D_1$, is a dense involutional subalgebra of $C(V\times[0,1])$ so the commutative elements of D are edged.

In the even case, we will have an analogous description and we put $\Omega^m(V,g)$, as $\Omega^m(V,g) \oplus \Omega^{m-1}(V,g) \oplus \Omega^{m+1}(V,g)$.

Proof: Let $\ell_i \in B(O)$ a partition of the unit associated to the covering. The d domain contains the subspace from Ω^m generated by subspaces $C_o^\infty(U_i, \Lambda^m)$ which are dense.

Let $\omega\in dom\ d$ and $\omega_i=l_i\omega$. According to the previous lemma, there is $\alpha_k\in C_c^\infty(U_i,\Lambda^n)$ that converges towards ω_i so that $d\alpha_k$ converges towards $d\omega_i$: we will demonstrate that if n is odd, πd is autoadjunct and if n is even, the adjunct of d is $-\pi d\tau$. Supposing that n is even and we proved that imd is closed.

Let d_i the closing of d on the essential domain $C_c^\infty(O_i, \Lambda_o^m(T^*O_i))$ and id_i their transposed on $\Omega^m(O_i)$. So we know that if d_i image is closed, by duality, also im^id_i is closed. There is $\omega_k \in dom^id_i$ so that ${}^id_i\xi_i \lim (d\omega|O_i)$. We consider $\xi = \sum_i \ell_i \xi_i$ and $\lim d\omega_k = d\xi_i$, therefore imd is closed, respective the inverse d^i of d is continuous on its support. Let P the octagonal projector of $\Omega^m(V,g)$, on d support, and Q the octagonal projector of Ω^{m+i} on imd. For each i, let $\theta_i \to U_i \subset T^m$ an immersion and we fix an extension h_i on T^n and g_i on U_i . We will identify the differential forms with the support in O_i and those ones on T^n with the support in U_i . Let $f:\Omega^{m+i}(T^n,h_i)\to\Omega^m(T^n,h_i)$ a continuous operator defined by lemma 3 and ξ of C^∞ class. $f^i\xi=\delta_0(P_0+\Delta_0)^{-1}\xi$.

Let $\psi_i \equiv 1$ on the $\sup p(\ell_i)$ and with the support in U_i the limited interval, $[d, \psi_i]$. We note with d_i the exterior difference on $\Omega(T^n, h_i)$. Let $\ell_i : \Omega^{m+1}(V, g) \to \Omega^m(T^n, h_i)$ given by $\ell_i(\alpha) = d_i \psi_i d^{-1} Q \alpha$ and we presume $T_\alpha = \sum \ell_i t_i \ell_i(\alpha)$.

We calculate dT this way: $dT_{\alpha} = \sum_{i} \ell_{i} t_{i} \ell_{i} (\alpha) + \sum_{i} [d_{i} \ell_{i}] t_{i} \ell_{i} (\alpha)$

We have $dT\alpha = Q + bQ$, where $b \in L^{n(g)+(Q^{m+1},Q^m)}$. Also we have $PT - d^{-1} \in L^{n(g)+}$ and therefore $d^{-1} \in L^{n(g)+}$.

In the case n- even, we obtain by an analogue reasoning that d image is closed and $d=d_0$, and $d^*=-nd\tau$ so $d+d^*$ anticommutes with τ . We construct the operator $T^k\in L(\Omega^{k+1},\Omega^k)$, $T^k\alpha=\sum \ell_i t_i^k\ell_i^k(\alpha)$, where t_i^k , ℓ_i^k are being constructed as above. We obtain that $dT^{m-1}+T^md=1+a$, with $a\in L^{n(g)+}$, then $d^{-1},d^{m-1}\in L^{n(g)+}$ and finally that D is a resolvent in $L^{n(g)+}$. This property is demonstrated in [9]. For the last stage, let O_2 a covering that contains at least O si O_1 and let $h_2\in R(O_2)$. It is sufficient to demonstrate for h_2 .

Let g(t) an optimal way in R(O) with $g(0) = h_2$ and g(1) = g obtained by a complex interpolation, as in the proposition 5. As πd is autoadjunct on the space generated by $C_c^\infty(U_t, \Lambda^m)$ we have the that the family of operators $D = (D_t)_{t \in [0,1]}$ operates on C([0,1]) module $(\Omega^*(V,g(t)))_{t \in [0,1]}$ is adjunct and it is the resolvent in the ideal of the compact operators of the module.

Finally, let W_j , for $1 \le j \le k$, opened of the covering O_2 . Subalgebra $C(V \times [0,1])$ generated by the union of the subalgebras $C_c^{\infty}(U_i \times [0,1])$ and $C_c^{\infty}(W_j \times [0,1])$ is dense and composed by elements that commute in D.

Exemple 10: Derivable varieties of p degree.

Let V is a topological variety whose maps that define its atlases are being defined by derivable homeomorphisms $\theta: U \to W$ unde $\theta' \in L^p$. The conditions from the theorem 9 are being fulfilled if $p>\frac{n(n+1)}{2}$. Taking into consideration the previous notations, let $(O_i)_{i\in I}$, a covering and $(g_i)_{i\in I}$, the specific metric of this covering. Let $A:U_i\to L(R^n)$ a measurable field of positive matrices on g_i , in comparison with the standard structure, and a norm on $(\Omega^k(U_i,g_i))$, given by

$$\left\{\int_{U_{\epsilon}} <\lambda^{k} \left(A^{-1}\right) \omega, \, \omega > \det(A)^{\frac{1}{2}} \, dx\right\}^{\frac{1}{2}}$$

If $a \in M_{\kappa}(R)$, is a positive matrix ≥ 1 and we always have

$$\lambda^{k}(a^{-2})\det(a) \le ||a||^{n-k} \text{ and } \lambda^{k}(a^{2})\det(a)^{-1} \le ||a||^{k}$$
.

Therefore $\lambda^k (A^{-1}) \det(A)^{\frac{1}{2}} \in L^{\frac{P}{n-k}}$ and $\lambda^k (A) \det(A)^{-\frac{1}{2}} \in L^{\frac{P}{k}}$, which according to Hölder inequality, lead us to the inclusion $L^{p_k} \subset \Omega^k (V,g) \subset L^{q_k}$,

where $p_k = \frac{2p}{p+k-n}$ and $q_k = \frac{2p}{p+k}$. If n=2m+1 then the relations

from the definition 2 are being satisfied if $\frac{p-m-1}{2p} + \frac{1}{2n} > \frac{p+m+1}{2p}$, i.e if

 $p > n(m+1) = \frac{n(n+1)}{2}$. If n-2m then the relations from the definition 2 are being

satisfied
$$\frac{p-m}{2p} + \frac{1}{n} > \frac{p+m+1}{2p}$$
, i.e if $p > \frac{n(2m+1)}{2} = \frac{n(n+1)}{2}$

References.

 T. Ando, F. Kubo- Means of positive linear operators, Math. Annalen 246 (1979) n.3, p.205-224.

- [2] M.F. Atiyah, V. K. Patodi, I.M. Singer- Spectral asymmetry and Riemmanian Geometry I, Math. Proc. Camb. Phil. Soc. 77 (1975) p. 43-69.
- [3] J. Berg, J. Löfström- Introduction Spaces, an introduction, Springer-Verlag: Berlin Heildelberg New York (1987).
- [4] A. Connes- Non Commutative Geometry, Odile Jacob, Paris.
- [5] A. Connes, D. Sullivan, N. Teleman- Quasiconformal mappings, Operators in Hilbert space, and local formulae for characteristic classes, Topology 33 n.4 (1984) p. 683-691.
- [6] F. W. Gehring- QuasiConformal Mapping, Acta Math 56 (1989).
- [7] I.C. Gohberg, M.G. Krein- Introduction to the theory of linear nonselfadjoint operators, American Mathematical Society, Transl. Of Math. Monographs (1969).
- [8] M. Hilsum-Fonctorialité en K-théorie bivariante pour les variété lipschitziennes, K-theory 3 (1989) p. 401-440.
- [9] Y.G. Reshetnyak- Some Geometrical properties of functions and mappings with generalized derivatives, Sibirsck. Mat. Z 7 (1966) 886-919.
- [10] E. Stein- Singular integrals and differentiabitity of functions, Princeton mathematical series 30 Princeton University Press, Princeton NJ (1970).
- [11] N. Teleman- The index of signature operator on Lipschitz manifolds, Pub. Math. I.H.E.S. 58 (1983) p. 39-78.

Received: 5.09.2001

"1 Decembrie 1918" University of Alba Iulia Str. N. Iorga, No. 13, 2500, Alba Iulia, Alba dbreaz @lmm.uab.ro