ON A PROPERNESS METHOD FOR FREE VIBRATIONS PROBLEM

Cristinel MORTICI

Abstract. This paper is concerned with the existence of nontrivial periodic solutions (free vibrations) of semilinear wave equations of the form

$$\begin{cases} u_{tt} - u_{xx} + g(t, x, u) = f(t, x) \\ u(t, 0) = u(t, \pi) = 0, & t \in \mathbb{R} \\ u(t + 2\pi, x) = u(t, x), & t \in \Omega \end{cases}$$

where $\Omega = (0, 2\pi) \times (0, \pi)$. It is used Liapunov-Schmidt method to obtain solutions of this problem as a limit of solutions of related problems in some finite dimensional spaces which can be solved. This problems will be considered with approximation schemes and corresponding mappings called approximation-proper operators.

MSC: 35L20,35L75

Keywords: Semilinear waveequation, existence of periodic solutions

1. Introduction

Let X be a real Banach space and X^* the dual space of X, i.e. the Banach space of functionals on X. Denote by " \rightarrow " and " \rightarrow " the strong, respective the weak convergence on X.

Let $L: D(L) \subset X \to X^*$ be a linear operator, densely defined and let $S: X \to X^*$ be nonlinear. We are interested in approximative solving the semilinear equation Lu = S(u)

(1)
$$Lu = S(u)$$

using the Liapunov-Schmidt method. We associate to equation (1.1) a sequence of related equations defined in finite dimensional subspaces of X*, then the solution of (1.1) can be obtained as the limit of the sequence of the solutions of associated finite dimensional equations.

In fact, the approximation-solvability of the operator equation (1.1) is equivalent to its finite dimensional solvability whenever the given operators satisfy some properness conditions, as we can see next.

The theory of A-proper mappings combine pure existence results and constructive solvability of operator equations in a Banach space, via finite dimensional approximations.

Finally, we use these results to establish some existence theorems for free vibrations problem.

2. The Results to a COHTAIN SERVERS TO BE A VEC Assume that N(L) is closed subspace of X, $\dim N(L) = \infty$ and $R(L) \subset$ X* is also closed.

Let $P: X \to X$ be a projector, that is a linear, bounded, idempotent operator.

Lemma 1 The operator $P^*: X^* \to X^*$ given by

$$< P^*x^*, x> = < x^*, Px> \;,\; x^* \in X^* \;,\; x \in X$$

is projector.

Proof. The linearity and boundedness of P* follow from the fact that P is linear and bounded. Then $\langle P^*P^*x^*, x \rangle = \langle P^*x^*, Px \rangle = \langle x^*, PPx \rangle = \langle x$ x*, x >, so P* is idempotent and consequently, projector.
■

We say that the pair of operators (P, P^*) is exact with respect to L if

$$R(P) = N(L)$$
 , $N(P^*) = R(L)$

and

$$X = N(P) \oplus N(L)$$
, $X^* = R(L) \oplus R(P^*)$.

Lemma 2 The restriction $L: D(L) \cap N(P) \rightarrow R(L)$ is invertible.

Proof. Indeed, if Lu = 0, with $u \in D(L) \cap N(P)$, then $u \in N(L)$ and $u \in N(P)$. It follows u = 0 because $N(L) \cap N(P) = \{0\}$. Now, let us denote

$$K := (L|_{D(L) \cap N(P)})^{-1} (I - P^*),$$

where I is the identity on X^* . K is called the generalized inverse of L. Obviously, K is linear, and if L is closed, then K is continous, accordingly to the closed graph theorem.

Further, we use Liapunov-Schmidt method, therefore we apply P^* and I- P^* in (1.1). We obtain the equivalent system $\begin{cases} P^*S(u) = 0 \\ L(I - P)u = (I - P^*)S(u) \end{cases}$ $\begin{cases}
P^*S(u) = 0 \\
u = Pu + KS(u)
\end{cases}$, thus u = T(u), where

$$T(u) := Pu + KS(u) - ZP^*S(u)$$

and $Z: R(P^*) \rightarrow N(L)$ is linear, continous and injective.

Now, let us consider an increasing sequence $(X_n)_{n \in \mathbb{N}}$ of finite dimensional subspaces of X and let $P_n: X \to X_n$ be projections such that $P_n x \to x$, $\forall x \in$

To each $n \in \mathbb{N}$ define $P_n^*: X^* \to X_n^*$, by the formula

$$< P_n^* x^*, x > = < x^*, P_n x > , \quad x^* \in X^*, x \in X_n.$$

It is easy to see that P_n^* are projections and moreover,

$$P_n^* x^* \to x^*$$
, $\forall x^* \in X^*$.

Under these assumptions, the scheme $\Gamma = \{X_n, P_n, X_n^*, P_n^*\}$ is a complete projection scheme, namely the following properties are satisfied:

(a) $\dim X_n = \dim X_n^*$.

(b) $P_n: X \to X_n$, $P_n^*: X^* \to X_n^*$ are projections such that $P_n x \to x$ and $P_n^* x^* \to x^*, \forall x \in X, x^* \in X^*.$

We give the following result for existence of existence of a complete pro-

jection scheme:

Lemma 3 If $dim(L) = \infty$ and the pair (P, P^*) is exact with respect to L, then there exists a complete projection scheme Γ .

Let $\{U_n\}_{n\in\mathbb{N}}$ be an increasing sequence of finite dimensional subspaces of N(L) such that $\bigcup_{n \in \mathbb{N}} U_n = N(L)$ and $E_n : X \to U_n$ denotes the corresponding projections.

Now, define $X_n := U_n \oplus N(P)$ and the projections $P_n := E_n + (I - I_n)$ $P): X \to X_n$. Similarly, we consider an increasing sequence $\{V_n\}_{n \in \mathbb{N}}$ of finite dimensional subspaces of $R(P^*)$ with dim $V_n = \dim U_n$ and $\overline{\bigcup_i V_n} =$

 $R(P^*)$. Let $F_n: X^* \to V_n$ be the corresponding projections and define $X_n^* := V_n \oplus R(L)$, $P_n^* := F_n + (I - P^*) : X^* \rightarrow X_n$ In conclusion, $\Gamma = \{X_n, P_n, X_n^*, P_n^*\}$ is complete projection scheme for the pair (X, X^*) .

In case dim $N(L) = \infty$, we consider a kind of convergence defined in [7],

[8] between the weak and strong convergence, called L-convergence.

We say that a sequence $\{u_n\}_{n\in\mathbb{N}}\subset X$ is L-convergent to $u\in X$ and denote $u_n \xrightarrow{L} u$ if

$$Pu_n \rightarrow Pu$$
 and $(I - P)u_n \rightarrow (I - P)u$.

Note that I-convergence is weak convergence and if $\dim N(L) < \infty$, then L-convergence is in fact strong convergence. To an equation

$$(2) T(u) = f , f \in X^*,$$

where $T: X \to X^*$, we associate a sequence of approximation-equations

(3)
$$T_n(u_n) = P_n^* f$$
,

if $\Gamma = \{X_n, P_n, X_n^*, P_n^*\}$ is a complete projection scheme for the pair (X, X^*) , and $T_n = P_n^* T$, $u_n \in X_n$.

Definition 4 We say that the equation (2.1) is almost solvable with respect to Γ if there exists $n_f \in \mathbb{N}$ such that for all $n \geq n_f$, the equation (2.2) has a solution $u_n \in X_n$, and the sequence $\{u_n\}_{n \geq n_f}$ of approximative solutions is L-convergent to $u \in X$ and T(u) = f.

Definition 5 An operator $T: X \to X^*$ is called A_L -proper with respect to Γ if the restrictions $T_n: X_n \to X_n^*$ are continuous, for all n, and if Γ_m is a subscheme of Γ and $\{u_m \mid u_m \in X_m\}$ is a bounded sequence of solutions with $T_m u_m \to f$ in X^* it results $u_m \xrightarrow{L} u$, at least on a subsequence and T(u) = f.

We give the following result concerning the almost solvability of a semilinear equation.

Theorem 6 Let X be a real, reflexive Banach space. Assume that K is compact, S is bounded and the equation (2.1) is solvable in any finite dimensional subspace of X and the solutions remain in a bounded set $\overline{\Omega} \subset X$. Then if L - S is A_L -proper, then the equation (2.1) is almost solvable.

Proof. For $n \ge n_0$ the approximation equation

$$(4) L_n u_n = S_n(u_n).$$

has a solution $u_n \in D(L) \cap \overline{X_n \cap \Omega}$, because (2.1) is finite dimensional solvable. We can suppose that $u_n \to u \in D(L) \cap \overline{X_n \cap \Omega}$ because X is reflexive.

Let us consider the equivalent form of (2.1):
$$\begin{cases} P_n^*S(u_n) = 0 \\ (I - P)u_n = KS(u_n) \end{cases}$$

Because K is compact, $(I-P)u_n \rightarrow (I-P)u$, eventually on a subsequence. But $Pu_n \rightarrow Pu$, therefore $u_nL \rightarrow u$.

In conclusion, $(L - S)u_n \rightarrow 0$ and from the fact that the operator L - S is A_L -proper, it follows: Lu = S(u).

3. Application

Let us study now the existence of nontrivial periodic solutions (free vibrations) of semilinear wave equations of the form

(5)
$$\begin{cases} u_{tt} - u_{xx} + g(t, x, u) = f(t, x) \\ u(t, 0) = u(t, \pi) = 0, & t \in \mathbb{R} \\ u(t + 2\pi, x) = u(t, x), & t \in \Omega \end{cases}$$

where $\Omega = (0, 2\pi) \times (0, \pi)$. Denote by \tilde{C}^2 the space of functions v(t, x) of class C^2 , 2π -periodic in t such that $v(t, 0) = v(t, \pi) = 0$.

In
$$L^2(\Omega)$$
, the family $(\psi_{nk})_{(n,k)\in\mathbb{N}\times\mathbb{K}}$, given by

$$\psi_{nk}(x,t) = \begin{cases} \sqrt{\frac{2}{\pi}} \sin nx \sin kt & (n,t) \in \mathbb{N} \times \mathbb{N} \\ \frac{1}{\pi} \sin nx & n \in \mathbb{N}, \ k = 0 \\ \sqrt{\frac{2}{\pi}} \sin nx \cos kt & n \in \mathbb{N}, \ -k \in \mathbb{N} \end{cases}$$

is an othonormal basis,

$$\Box \psi_{nk} = (n^2 - k^2)\psi_{nk}.$$

Define $L: D(L) \to L^2(\Omega)$, by

$$Lu = \sum_{n=1}^{\infty} \sum_{k=-\infty}^{\infty} (n^2 - k^2)(u, \psi_{nk})\psi_{nk}$$
,

where

$$D(L) = \left\{ u \in L^{2}(\Omega) \mid \sum_{n=1}^{\infty} \sum_{k=-\infty}^{\infty} (n^{2} - k^{2}) |(u, \psi_{nk})|^{2} < \infty \right\}.$$

L is densely defined, selfadjoint and R(L) is closed.

The generalized inverse K of L is compact. Indeed,

$$Ku = \sum_{k \neq n} \frac{(u, \psi_{nk})}{n^2 - k^2} \psi_{nk}.$$

Assume that $g : \Omega \to \mathbb{R}$ is a Caratheodory function and there exist c > 0, $g_0 \in L^2(\Omega)$ such that

$$|g(t, x, u)| \le c|u| + g_0(t, x)$$

for all $(t, x) \in \Omega$ and $u \in \mathbb{R}$. Under these assumptions, the corresponding Nemiţki operator of $g, S : L^2(\Omega) \to L^2(\Omega)$, given by

$$(Su)(t,x) = g(t,x,u(t,x))$$

is bounded and continous. We say that $u \in L^2(\Omega)$ is a generalized solution of (3.1) if

(6)
$$(u, v_{tt} - v_{xx}) + (Su, v) = (f, v), \forall v \in \tilde{C}^2$$

Now, the equation (3.2) can be equivalently written as

$$Lu + S(u) = f$$
, $u \in L^2(\Omega)$

and we can apply theorem 1. In conclusion, equation (3.2) and consequently (3.1) have solutions in generalized sense.

References

- H. Amman, Liusternik-Schnilermann Theory and Nonlinear Eigenvalue Problems, Math. Ann., 119(1972), 55-72.
- [2] V. Barbu, Weak Solutions for Nonlinear Functional Equations in Banach Spaces, Math. Ann, Pura Appl., 87(1970), 87-110.
- [3] F.E. Browder, Nonlinear Eigenvalue Problems and Galerkin Approximations, Bull. AMS, 74(1968), 651-656.
- [4] M.A. Krasnoselski, P.P. Zabreiko, Geometric Methods in Nonlinear Analysis, Springer Verlag, New York, 1984.
- [5] L. Ljusternik, L. Schnilermann, Methodes Topologique dans les Problemes Variationelles, Hermann, Paris, 1934.
- [6] C. Mortici, A Topological Degree for A*-proper Mappings Acting from a Banach Space into its Dual, Bul. St. Univ. Baia Mare, 15(1999), nr.1-2, 139-144.
- [7] D. Pascali, On Mappings of Type (S), An. Univ. Ovidius, 3(1995).
- [8] D. Pascali, Elliptic Eigenvalue Variational Inequalities, Lib. Math., 12(1992), 39-56.
- [9] I.V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Transl. Math. Monographs, 139(1994).

Received: 26.02.2001

Valahia University,
Department of Mathematics, Bd. Unirii 18,
0200 Târgovişte
E-mail: cmortici@valahia.ro