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Abstract. The paper is concerned with approximation of the solutions
of sealar oquation by an iterative method of Halley-Aitken type. The local
convergence and error bounds are discussed
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L.Introduetion

Let f: [a, bl — N, where b € R, a < b, and suppose Lhat I has the
firgt order derivative, which is positive: ' {z) > 0,%x € [a,b]. Consider the
function k ; [a,b] — K

(11) A

Vv fia)
In [2] there is shown that the Halley method for solving
(L.2) flx)=0

is in fact the Newton method for solving (1.1]. This method consists therefore
in generating Lhe sequence (wq), ., by
h ()

;13:' I:H'I =-:|.---||I s F'[.I;il IL‘q}'F lﬂ&]., f|'.|=':|':|1| .....



The first and second order derivatives of h are given by

_ 2= - 1 (=) S ()

(1.4) () T 1 € [a,b]

and

15w < BIEr ;;I‘ET ;]:;} S@E) e,
These relations imply

(1.6) B (z) = f @)

aund

(1.7) K {E) =10

where € [a, b denotes the solution of (1.2). As shown in [1]; equality (1.7)
characterizes the Halley mothod, in the sense that ensures ils convergonoes
order 3. The authors of [4], analyzing an algorithm of Heron for approximat-
ing m, give a genernl algoribhm which can be nsed for approximating Lhe
cubic root of any real positive number,

In [7] it is shown that the algorithm from [4] is nothing else than the
chord method applied Lo equation h{z) = 0 where hiz) = %, wilh
fizr) =o' — N. In this case the equation h (r) =Dha.sthef=:nrm;r"—§ = 0,
whem N =0, N € i.

It iz clear that between the Heron algorithm and the Halley method there
exigts A connoction, in Lthe sense that the transformed equation to which
we apply the Newton or the chord method is the same. In [7] and [10],
the anthors study the convergence and errar bounds for the Steffensen and
Aitken-Steffensen methods applied to (1.1). Tn this note we shall stndy a
variant of the Aitken-Steffensen method, which differs from those presented
in [10] and [11].

We shall consider other two equations, equivalent to (1.2), having the
form

(1.8} =y (Z)=10
and
(1.9) % — g (1) = 0,



where iy, g : [a,B] = |a, b] will be conveniently chosen.
W shall study the sequence (n),., given by

| o hp(E)
(L10) Tner = 2y (Fn) [y (z0) . 409 (g9 (20)) 5 A

, Zp € [o,b], n=0,1,...

We shall consider the following assumptions on [, and @y

i feltab;

ii. equation [1.2) has a solution T € (a,b);

i, ff(x) > 0,¥x € [a, b;

iv., 1, obeys 0 < [z, u4] < 1,¥2,y € [, b], where [x, 47 i5;] denotea the
first arder divided difference of ) on x and 3

[z, w50] = (o (w) — 1 (20} / (9 — 2)5

v. ipq obeys —1 < [z,19] <0, ¥z, ¥ € [2.8].
2. The local convergence and error bounds

We shall use the following idemiities:

(2.1)
BRI TN ) SRR O 1 1))
0 (@) = T le iAo S T ) e (o ()i B
s 0L ey
and also the Newton idenfity
(2.2) h(z) = hiy) + .z h) (z - o)+ 50z k- v) (2 - 2)

where [z,9, z; | is the second order divided difference of h on =, ¥, 2.

We notice that equality (1.8) and hypothesis 1. ensure the existence of
a,fER a<e<T << bsuchthat i (z) > 0Vz € [, 3]

The following theorem holds:

Theorem 1 Let [o, 8] C [a, 5] be such that &' {z) > 0 ¥z € e, 3. If the
functions f, iy, 10y and the initial approrimation o satisfy:

a) zp € [, J] can be chosen such that @, (zo} € le, 5] and 5 (1, (z0)) €
[ex, ) 5

b} the hypotheses i-v an satisfied,

Then the following properiies are true:
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. for alln € N we have
(@sn — 2| < max {2t — 1 (@] Jnst = @ (21 ()}
97, there exists k = 0, k € R, which does not depend on n, such that
i — F| < kjze —F[°, ¥ € N;

jii. if To iz close enough to T lo obey vk |E — 2p| << 1, then the sequences
(Fn)nza: (i1 (B nmg aned (i (2 Exn}nn:m converge to their commaon limi
o

P roof. all analyses two cases.

L o < F Then i, (2a) — F = ¢, (Ta) — @ (F) = [2o. Fs 2y (2o — F) < O,
e, iy (2g) < T Denote W(x) = r — ¢ (z)}, and s0 V(m) - V(E) =
[T0, T ¥] {20 — E) = [1 — [20. T, 1]} (0 — F) < 0, Le: 2o < 2y (%0). Now we
show that i, (9 (7o) = F. From i (2p) < 7 it follows @y (¢ (m)) - F =
o (7 (T0)) = 192 (F) = [F.opy (2o} iime] (21 (o) = F) = 0, i iy (391 (20)) = T
Next, we show that xp € [i7, (To) . s (¢ (20))], where &z, is obtained from
(L.10) for n = 0. Sinee ¥ (z) = 0.¥z € [a.g), and @, (w) € [0, 4], we
get that Ay, (ze)) < 0 (we know that y, (xp) < F) and so rsatisfies
T3 > iy (To). We have used the fact that B () > 0 V2 € o] implies
iy (e} 22 (424 (wa)) ; h] > 0. Now we show that x; < i () (%)) This in-
equality follows from @, {5 (7)) > Z. h{igy (2, (2a))) = 0 and from (2.1) for
n = 0. we have shown that

{2.3) To < @ (30) < F < p iy (xa))
and
(2.4) 1 € (4 (wa) , 10 (121 (20])) .

IL zp > T. Similarly Lo the above reason, we get thal

(2.5) Zo > @) (Zo) > T > @y (g (To))
and
(2.6) i € (e (¥ () 4 (x0)) .

Dencting by Iy the cpen interval determined by g, (my) and @y (12 (2o)),
then obviously relations {2.3] - (2.6} may be sinthetized as

Ty, T € e
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It can be ensily seen Lhat if we dencte by 1, the open nterval determined
by 2 (21) and 4 () (1)) then get

I-| ':_ID
amd
Ly, T E JTJ_

where xy is vbtained from (1.10) for n = 1.
Let I, be the open interval determined by @1 (@n) and @, (i) (2,)) for
some i € V. Then repeating the above reason, we may show hat

':1-11.?} E:-T:'l.-li = In
and
‘rn -1 - -En:

where Iy is determined by (Fn41) and 04 () (Zny1)). From the above
reason and from (2.7) it follows j., which yields an error bound bound for
each iteration step.

For jj. nsing identity (2.2} we get

h(E) = hligy (2ad) + les (20) 10 (00 (@) )5 B (T — sy () +
iy (20) , 2y {1 (2a)) . F; B] (T — 24 (2 )} (T — 0y (91 (2a)))

whence, laking into account {1.10) and h(ZF) = 0, we get

(2.8)
7w P (F) e (2 () E
i ['iF}i (Ln) oy f*'ﬁ'i (En)); R

The mean value formulae for the divided differences lead us to

{2.9) iy {'Tn} ' EIHJ h] =R [E'n-} el

(Z — @1 (2a)) (T = 00 (i (20))) -

and

h.l'l'
s ) 6 () 2500 = B 00) g g

From i. and nsing the Lagrange formula it follows
10) K () = K (9,) — K (B) = K" (6,) (0 — 7). 1, € .

89



Denoting

My = inf I|h"{;|:}|

& [, 01
and

My = sup [A" ()],
BE Jee |

from (2.8} and taking into account (2.9) and (2.10) we get

Ly |

|2 — Tg4a]| = i

[ — iy (Tn)] [T — w24 [0y (2a])] | — 1]

The property jj. follows easily by dencting k = o and taking into
account v, v, and the [nct that 5, £ I,,.
Property jij is an immediate consequence of j and jj. m

3. Determining the functions -, and ¢,

We shall present a modality of choosing , and i, in order to ohey the
assumptions of Theorem 2.1

Suppose that [ is strictly convex on [a, b, Le " (x) > 0,¥z € [a,b]. This
assumption, together with f' () = 0 ¥z € [a.b), lead, by {1.4) to #' (x} =
0¥z € [e,7]. Relation (1.4) again and f'(x) > 0 and f(F) = 0 inaply the
ecintence of 3, £ < # < b such that &' (z) > 0, ¥z € [ 4] These hypotheses
ensure the existence of an interval [a, J) for which &' (z) > 0, vz € [o, F].
Since [ (z) > 0 it follows that f'(z) is increasing on {a, .

Taking

o1 () =m—ﬁnm}

and

#a(7) =z = 2f(2),

with g = f, (b) and 0 < A < fi{e), and assuming that 0 < f'(z) < 2),¥r €
[@,b], then the functions i, and ¢, defined above obey hypolheses iv and v
of Theorem 2.1, For a < 3y = ¥ in Theorem 2.1, hypothesis i3, (xq) € [, 5]
is automatically verified, but the assumption @, (¢, (2p)) € (o, J] must be
kept.
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