Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, Vol. XVII(2001), Nr. 1-2, 85-92

A HALLEY-AITKEN TYPE METHOD FOR APPROXIMATING THE SOLUTIONS OF SCALAR EQUATIONS

Ion PĂVĂLOIU

Abstract. The paper is concerned with approximation of the solutions of scalar equation by an iterative method of Halley-Aitken type. The local convergence and error bounds are discussed

MSC: 65H05, 65D15

Keywords: Halley iterative method, Newton iterative method, Aitken iterative method, convergence

1.Introduction

Let $f:[a,b] \to R$, where $a,b \in R$, a < b, and suppose that f has the first order derivative, which is positive: $f'(x) > 0, \forall x \in [a,b]$. Consider the function $h:[a,b] \to R$

$$h(x) = \frac{f(x)}{\sqrt{f'(x)}}.$$

In [2] there is shown that the Halley method for solving

$$(1.2) f(x) = 0$$

is in fact the Newton method for solving (1.1). This method consists therefore in generating the sequence $(x_n)_{n\geq 0}$ by

$$(1.3) x_{n+1} = x_n - \frac{h(x_n)}{h'(x_n)}, x_0 \in [a, b], n = 0, 1, ...,.$$

The first and second order derivatives of h are given by

$$h'(x) = \frac{2 [f'(x)]^2 - f''(x) f(x)}{2 [f'(x)]^{3/2}}, x \in [a, b]$$

and

(1.5)
$$h''(x) = \frac{\left[3\left[f''(x)\right]^2 - 2f'''(x)f'(x)\right]f(x)}{4\left[f'(x)\right]^{5/2}}, x \in [a, b].$$

These relations imply

$$(1.6) h'(\overline{x}) = [f'(\overline{x})]^{1/2}$$

and

(1.7) be the becomes proper
$$h''(\overline{x}) = 0$$
 and the probability of the standard of the standa

where $\overline{x} \in [a, b]$ denotes the solution of (1.2). As shown in [1], equality (1.7) characterizes the Halley method, in the sense that ensures its convergence order 3. The authors of [4], analyzing an algorithm of Heron for approximating $\sqrt[3]{100}$, give a general algorithm which can be used for approximating the cubic root of any real positive number.

In [7] it is shown that the algorithm from [4] is nothing else than the chord method applied to equation h(x) = 0 where $h(x) = \frac{f(x)}{\sqrt{f'(x)}}$, with $f(x) = x^3 - N$. In this case the equation h(x) = 0 has the form $x^2 - \frac{N}{x} = 0$, when N > 0, $N \in \mathbb{R}$.

It is clear that between the Heron algorithm and the Halley method there exists a connection, in the sense that the transformed equation to which we apply the Newton or the chord method is the same. In [7] and [10], the authors study the convergence and error bounds for the Steffensen and Aitken-Steffensen methods applied to (1.1). In this note we shall study a variant of the Aitken-Steffensen method, which differs from those presented in [10] and [11].

We shall consider other two equations, equivalent to (1,2), having the form

(1.8)
$$x - \varphi_1(x) = 0$$

and

$$(1.9)$$
 $x - \varphi_2(x) = 0$,

where $\varphi_1, \varphi_2 : [a, b] \rightarrow [a, b]$ will be conveniently chosen. We shall study the sequence $(x_n)_{n\geq 0}$ given by

$$(1.10) \quad x_{n+1}=\varphi_{1}\left(x_{n}\right)-\frac{h\left(\varphi_{1}\left(x_{n}\right)\right)}{\left[\varphi_{1}\left(x_{n}\right),\varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right);h\right]},\ x_{0}\in\left[a,b\right],\ n=0,1,\ldots.$$

We shall consider the following assumptions on f, φ_1 and φ_2 :

f ∈ C⁴ [a, b];

ii. equation (1.2) has a solution $\overline{x} \in (a, b)$;

iii. $f'(x) > 0, \forall x \in [a, b];$

iv. φ_1 obeys $0 < [x, y; \varphi_1] < 1, \forall x, y \in [a, b]$, where $[x, y; \varphi_1]$ denotes the first order divided difference of φ_1 on x and y:

$$\left[x,y;\varphi _{1}\right] =\left(\varphi _{1}\left(y\right) -\varphi _{1}\left(x\right) \right) /\left(y-x\right) ;$$

v. φ_2 obeys $-1 < [x, y; \varphi_2] < 0, \ \forall x, y \in [a, b]$.

2. The local convergence and error bounds

We shall use the following identities:

$$(2.1)$$

$$\varphi_{1}\left(x_{n}\right) - \frac{h\left(\varphi_{1}\left(x_{n}\right)\right)}{\left[\varphi_{1}\left(x_{n}\right), \varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right); h\right]} = \varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right) - \frac{h\left(\varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right)\right)}{\left[\varphi_{1}\left(x_{n}\right), \varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right); h\right]}$$

$$n = 0, 1, ..., .$$

and also the Newton identity

$$(2.2) h(x) = h(y) + [y, z; h](x - y) + [x, y, z; h](x - y)(x - z)$$

where [x, y, z; h] is the second order divided difference of h on x, y, z.

We notice that equality (1.6) and hypothesis i. ensure the existence of $\alpha, \beta \in R$, $a \le \alpha < \overline{x} < \beta \le b$ such that $h'(x) > 0 \ \forall x \in [\alpha, \beta]$.

The following theorem holds:

Theorem 1 Let $[\alpha, \beta] \subseteq [a, b]$ be such that $h'(x) > 0 \ \forall x \in [\alpha, \beta]$. If the functions f, φ_1, φ_2 and the initial approximation x_0 satisfy: a) $x_0 \in [\alpha, \beta]$ can be chosen such that $\varphi_1(x_0) \in [\alpha, \beta]$ and $\varphi_2(\varphi_1(x_0)) \in [\alpha, \beta]$;

b) the hypotheses i-v an satisfied.

Then the following properties are true:

j. for all $n \in N$ we have

$$|x_{n+1} - \overline{x}| \le \max\{|x_{n+1} - \varphi_1(x_n)|, |x_{n+1} - \varphi_2(\varphi_1(x_n))|\};$$

jj, there exists k > 0, $k \in R$, which does not depend on n, such that

$$|x_{n+1} - \overline{x}| \le k |x_n - \overline{x}|^3, \ \forall n \in \mathbb{N};$$

jij. if x_0 is close enough to \overline{x} to obey $\sqrt{k} |\overline{x} - x_0| < 1$, then the sequences $(x_n)_{n \geq 0}$, $(\varphi_1(x_n))_{n \geq 0}$ and $(\varphi_2(\varphi_1(x_n)))_{n \geq 0}$ converge to their common limit \overline{x} .

P roof, all analyses two cases.

I. $x_0 < \overline{x}$. Then $\varphi_1(x_0) - \overline{x} = \varphi_1(x_0) - \varphi_1(\overline{x}) = [x_0, \overline{x}; \varphi_1](x_0 - \overline{x}) < 0$, i.e., $\varphi_1(x_0) < \overline{x}$. Denote $\Psi(x) = x - \varphi_1(x)$, and so $\Psi(x_0) - \Psi(\overline{x}) = [x_0, \overline{x}; \Psi](x_0 - \overline{x}) = [1 - [x_0, \overline{x}, \varphi_1]](x_0 - \overline{x}) < 0$, i.e. $x_0 < \varphi_1(x_0)$. Now we show that $\varphi_2(\varphi_1(x_0)) > \overline{x}$. From $\varphi_1(x_0) < \overline{x}$ it follows $\varphi_2(\varphi_1(x_0)) - \overline{x} = \varphi_2(\varphi_1(x_0)) - \varphi_2(\overline{x}) = [\overline{x}, \varphi_1(x_0); \varphi_2](\varphi_1(x_0) - \overline{x}) > 0$, i.e. $\varphi_2(\varphi_1(x_0)) > \overline{x}$. Next, we show that $x_1 \in [\varphi_1(x_0), \varphi_2(\varphi_1(x_0))]$, where x_1 is obtained from (1.10) for n = 0. Since h'(x) > 0, $\forall x \in [\alpha, \beta]$, and $\varphi_1(x_0) \in [\alpha, \beta]$, we get that $h(\varphi_1(x_0)) < 0$ (we know that $\varphi_1(x_0) < \overline{x}$) and so x_1 satisfies $x_1 > \varphi_1(x_0)$. We have used the fact that $h'(x) > 0 \ \forall x \in [\alpha, \beta]$ implies $[\varphi_1(x_0), \varphi_2(\varphi_1(x_0)); h] > 0$. Now we show that $x_1 < \varphi_2(\varphi_1(x_0))$. This inequality follows from $\varphi_2(\varphi_1(x_0)) > \overline{x}$, $h(\varphi_2(\varphi_1(x_0))) > 0$ and from (2.1) for n = 0, we have shown that

The middle of a contract of the contract of

$$(2.3) x_0 < \varphi_1(x_0) < \overline{x} < \varphi_2(\varphi_1(x_0))$$

and

(2.4)
$$x_1 \in (\varphi_1(x_0), \varphi_2(\varphi_1(x_0))).$$

II. $x_0 > \overline{x}$. Similarly to the above reason, we get that

$$(2.5) x_0 > \varphi_1(x_0) > \overline{x} > \varphi_2(\varphi_1(x_0))$$

and

$$(2.6) x_1 \in (\varphi_2(\varphi_1(x_0)), \varphi_1(x_0)).$$

Denoting by I_0 the coen interval determined by $\varphi_1(x_0)$ and $\varphi_2(\varphi_1(x_0))$, then obviously relations (2.3) - (2.6) may be sinthetized as

$$x_1, \overline{x} \in I_0$$
.

It can be easily seen that if we denote by I_1 the open interval determined by $\varphi_1(x_1)$ and $\varphi_2(\varphi_1(x_1))$ then get

$$I_1 \subset I_0$$

and

$$x_2, \overline{x} \in I_1$$

where x_2 is obtained from (1.10) for n = 1.

Let I_n be the open interval determined by $\varphi_1(x_n)$ and $\varphi_2(\varphi_1(x_n))$ for some $n \in \mathbb{N}$. Then repeating the above reason, we may show that

$$(2.7) \overline{x}, x_{n+1} \in I_n$$

and

$$I_{n+1} \subset I_n$$

 $I_{n+1} \subset I_n$, where I_{n+1} is determined by $\varphi_1(x_{n+1})$ and $\varphi_2(\varphi_1(x_{n+1}))$. From the above reason and from (2.7) it follows j., which yields an error bound bound for each iteration step.

For jj. using identity (2.2) we get

$$h(\overline{x}) = h(\varphi_1(x_n)) + [\varphi_1(x_n), \varphi_2(\varphi_1(x_n)); h](\overline{x} - \varphi_1(x_n)) + [\varphi_1(x_n), \varphi_2(\varphi_1(x_n)), \overline{x}; h](\overline{x} - \varphi_1(x_n))(\overline{x} - \varphi_2(\varphi_1(x_n)))$$

whence, taking into account (1.10) and $h(\bar{x}) = 0$, we get

(2.8)

$$\overline{x}-x_{n+1}=\frac{\left[\varphi_{1}\left(x_{n}\right),\varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right),\overline{x};h\right]}{\left[\varphi_{1}\left(x_{n}\right),\varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right);h\right]}\left(\overline{x}-\varphi_{1}\left(x_{n}\right)\right)\left(\overline{x}-\varphi_{2}\left(\varphi_{1}\left(x_{n}\right)\right)\right).$$

The mean value formulae for the divided differences lead us to

$$[\varphi_1(x_n), \varphi_2(x_n); h] = h'(\theta_n), \theta_n \in I_n$$

$$\left[\varphi_{1}\left(x_{n}\right) ,\varphi_{2}\left(\varphi_{1}\left(x_{n}\right) \right) ,\overline{x};h\right] =\frac{h^{\prime\prime}\left(\eta_{n}\right) }{2},\ \eta_{n}\in I_{n}.$$

From i. and using the Lagrange formula it follows

$$(2.10) h''(\eta_n) = h''(\eta_n) - h''(\overline{x}) = h'''(\xi_n)(\eta_n - \overline{x}), \ \eta_n \in I_n.$$

Denoting

$$m_1 = \inf_{x \in [a,\beta]} \left| h'\left(x
ight)
ight|$$

and

$$M_1 = \sup_{x \in [\alpha, \theta]} |h'''(x)|,$$

from (2.8) and taking into account (2.9) and (2.10) we get

$$\left|\overline{x}-x_{n+1}\right| \leq \frac{M_1}{2m_1} \left|\overline{x}-\varphi_1\left(x_n\right)\right| \left|\overline{x}-\varphi_2\left(\varphi_1\left(x_n\right)\right)\right| \left|\overline{x}-\eta_n\right|.$$

The property jj. follows easily by denoting $k = \frac{M_1}{2m_1}$ and taking into account iv, v, and the fact that $\eta_n \in I_n$.

Property jjj is an immediate consequence of j and jj.

3. Determining the functions φ_1 and φ_2

We shall present a modality of choosing φ_1 and φ_2 in order to obey the assumptions of Theorem 2.1

Suppose that f is strictly convex on [a, b], i.e. f''(x) > 0, $\forall x \in [a, b]$. This assumption, together with f'(x) > 0 $\forall x \in [a, b]$, lead, by (1.4) to h'(x) > 0 $\forall x \in [a, \overline{x}]$. Relation (1.4) again and f'(x) > 0 and $f(\overline{x}) = 0$ imply the existence of β , $\overline{x} < \beta \le b$ such that h'(x) > 0, $\forall x \in [\overline{x}, \beta]$. These hypotheses ensure the existence of an interval $[\alpha, \beta]$ for which h'(x) > 0, $\forall x \in [\alpha, \beta]$. Since f''(x) > 0 it follows that f'(x) is increasing on [a, b].

Taking

$$\left\langle \left(x\right) = x - \frac{1}{\mu}f\left(x\right) \right\rangle$$

and

$$\varphi_{2}\left(x\right)=x-\frac{1}{\lambda}f\left(x\right),$$

with $\mu \geq f_{\delta}'(b)$ and $0 < \lambda \leq f_{d}'(a)$, and assuming that $0 < f'(x) < 2\lambda, \forall x \in [a,b]$, then the functions φ_1 and φ_2 defined above obey hypotheses iv and v of Theorem 2.1. For $a \leq x_0 \leq \overline{x}$ in Theorem 2.1, hypothesis $\varphi_1(x_0) \in [\alpha,\beta]$ is automatically verified, but the assumption $\varphi_2(\varphi_1(x_0)) \in [\alpha,\beta]$ must be kept.

References

- Ben-Israel, A., Newton's method with modified functions, Contemp. Math., 204, pp. 39–50, 1997.
- [2] Brown, G. H., Jr., On Halley's variation of Newton's method, Amer. Math. Monthly, 84, pp. 726-728, 1977.
- [3] Candela, V. and Marquina, A., Recurrence relations for rational cubic methods I: The Halley's method, Computing, 44, pp. 169–184, 1990.
- [4] Deslauries, G. and Dubuc, S., Le calcul de la racine cubique selon H´eron, El. Math., 51, pp. 28–34, 1996.
- [5] Ford, W. F. and Pennline, J. A., Accelerated convergence in Newton method, SIAM Rev., 38, pp. 658–659, 1996.
- [6] Gerlach, J., Accelerated convergence in Newton's method, SIAM Rev., 36, pp. 272–276, 1994.
- [7] Luca, D. and Păvăloiu, I., On the Heron's method for the approximation of the cubic root of a real number, Rev. Anal. Numér. Théor. Approx., 28, pp. 103–108, 1997.
- [8] Melman, A., Geometry and convergence of Euler's and Halley's methods, SIAM Rev., 39, pp. 728–735, 1997.
- [9] Ostrowski, A. M., The Solution of Equations and Systems of Equations, Academic Press, New York-London, 1960.
- [10] Păvăloiu, I., On the monotonicity of the sequences of approximations obtained by Steffensen method, Mathematica (Cluj), 35 (58), pp. 171– 76, 1993.
- [11] Păvăloiu, I., Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32, pp. 69–82, 1995.
- [12] Păvăloiu, I., On a Halley-Steffensen method for approximating the solutions of scalar equations, Rev. Anal. Numér. Théor. Approx., 30, N°.1, 2001, pp.69-74.
- [13] Păvăloiu, I., On Some Aitken-Steffensen-Halley-Type Methods for Approximating the Roots of Scalar Equations, Rev. Anal. Numér. Théor. Approx., 30, N°.2, 2001, to appear.

[14] Popoviciu, T., Sur la délimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique, Rev. Roumaine Math. Pures Appl., 13, pp. 75–78, 1968.

Received: 10, 03, 2001

North University of Baia Mare
Department of Mathematics and
Computer Science
Str. Victoriei 76, 4800 Baia Mare
ROMANIA