OF TOPOGENOUS SPACES

Petru - Avram PETRIŞOR

Abstract. This paper determines a topogenous structure generated by a topogenous space and a family of sets.

MSC: 18B05, 18B30

Keywords: topologenous spaces, topological spaces

1. Introduction

The concept of a topogenous space has been introduced in the monograph

([1]) in order to give common generalisation of the concepts of topological space

and proximity spaces

2. Preliminaries and basic definitions

- 2.1. Definition. A topogenous order on a set X is a binary relation defined for the subset of X denoted by < and which satisfy the following conditions:</p>
 - a) $\theta < \theta$ and $X \le X$;
- b) A < B implies A ⊂ B;
 - c) $A \le B \subset D$ implies $A \le D$;
- d) $A_1 \le B_1$, $A_2 \le B_2$ implies $A_1 \cap A_2 \le B_1 \cap B_2$;
 - e) $A_1 < B_1$, $A_2 < B_2$ implies $A_1 \cup A_2 < B_1 \cup B_2$.
- 2.2. Definition. A topogenous structure on X is a topogenous order on X that is idempotent.

2.3. Exemples.

- If τ is a topology on set and we define A<_τB if and only if AcintB then < τ is a topogenous structure on X.
- If δ is a proximity relation on X and we can define <_δ like:
- A \leq_δ B if and only A δ (X B) then \leq_δ is a topogenous and structure on X
- 2.4. Definition. A topogenous space is a pair (X, <) where X is a set and < is a topogenous structure on X.</p>
- 2.5. Definition. If (X,≤1) and (Y,≤2) are topogenous spaces and f: X→Y is an application, then f is named continuous if and only if A≤2B implies f¹(A)≤1 f¹ (B).
- 2.6. Notations. Let us denote by TPG the category in which the topogenous spaces as objects, and (<1, <2) continuous maps as morphisms and by TOP the category in which the topological spaces as objects and continuous maps and morphism.</p>
 - 2.7. Definitions. The topogenous order < is perfect if and only if

$$A_i < B_i (i \in J)$$
 implies $U\{A_i | i \in J\} < U\{B_i | i \in J\}$

- 2.8. Remark. The category TOP can be isomorphically embedded by means of 2.3. into TPG. A topogenous space (X, <) is an object of TOP if the topogenous order ≤ is perfect.
- 2.9. Definition. Let (X, <) be a topogenous spaces and A a family of subset of X. The family A equipped with the order < is named topogenous order. The family (A, <) is named m + inductively order if any subfamily of A have a minimun.</p>
- 2.10. Notation. If (X, ≤) is a topogenous space then we denote with Dτ< the family:</p>

$$D\tau_* = \{G|G < G\}, \quad G \subset X_{\text{product}} \quad \text{and } \quad G \in X_{\text{$$

3. Topogenous spaces and topological spaces

3.1. Proposition. Let (X, <) be a topogenous space and S a family of subset of X closed with respect to the intersection. Let $S \in S$, $O \in D_{\tau <}$ and F (O, S) is the finest filter on X with respect to the property:

$$O \in F(O,S)$$
 implies $O < S$.

If $S \cap D\tau_{<} = \theta$ and F (O,S) is m - inductively ordered the there is a family F (G, H), where $G \in D\tau_{<}$ and $H \in S$, that such:

- 1) (F (G,H), <) is m inductively order;
- 2) G is the minimal elemnt of the family (F (G,H), <)

Proof. Let $O \in D_{\nabla^c}$, $S \in S$ and F(O, S) the finest filter on X with respect to properties: F(O, S) is m – inductively order and $O \in F(O, S)$ implies O < S. Considering the family:

$$J = \{(F(O_a, S_a), <) | a \in A\}$$

ordered through inclusion, where $O_a \in D\tau_<$, $S_a \in S$ and J' a subfamily of J totally ordained so:

$$J' = \{ (F(O_b, S_b), <), b \in B \subset A \}$$

Let:

$$G' = U\{O_b | b \in B\}, \quad \bigcap \{S_b | b \in B\} = H'$$

From

$$G' \supset O_b \in F(O_b, S_b) \ (\forall)b \in B$$

$$\underset{b \in \mathcal{B}}{U} O_b < \underset{b \in \mathcal{B}}{\bigcap} S_b \subset S_b$$

we get:

$$\bigcup_{b \in \mathcal{B}} O_b < S_b$$

and hence:

$$G' \in F(O_b, S_b) \ (\forall)b \in B \subset A$$

From the definition of the family F(G', H') we deduce that the inclusion:

$$F(O_b, S_b) \subseteq F(G', H') \ (\forall)b \in B$$

will take place and using Zorn's lemma we deduce that the family J has a maximum element (F(G, H), <) in relation with the inclusion and which is m – inductively ordered, i.e. 1) was demonstrated.

Let $T \in (F(G, H), <)$ and considering the family $\{G, T\}$. Taking into consideration that (F(G, H), <) is m – inductively ordered we deduce that $\{G, T\}$ has a minimum. If T < G then having in view the relation G < H and 2.1. (b) and c) we deduce that T < H. We may write:

$$T < H \ (\forall) T \in (\mathbb{F} (G, H), <)$$

If $T = H \in (F(G, H), <)$ we obtain the relation $H \le H$ will take place, hence $H \in D\tau_{<}$ On the other hand $H \in S$, hence $H \in S \cap D\tau_{<}$, therefore we obtain $S \cap D\tau_{<} \ne 0$, which is not true. Hence G is the minimal element of the family (F(G, H), <)

3.2. Proposition. Let (X, <) be a topogenous space and S a family of nonemty subset of X such that for any S∈S and O∈Dτ_< the family (F (O, S), <) is closed in relation with the finite intersection. Then the following equality takes place:

$$F(O_1 \cap O_2, S_1) \cap F(O_1 \cap O_2, S_2) = F(O_1 \cap O_2, S_1 \cap S_2)$$

Prof. From $O_1 \cap O_2 < S_1$, $O_1 \cap O_2 < S_2$ and 2.1. (d) we deduce that $O_1 \cap O_2 < S_1 \cap S_2$. We obtain the inclusion:

$$F(O_1 \cap O_2, S_1) \cap F(O_1 \cap O_2, S_2) \subseteq F(O_1 \cap O_2, S_1 \cap S_2)$$

From $O_1 \cap O_2 < S_1 \cap S_2 \subset S_1$ we get that $O_1 \cap O_2 < S_1$ and we may

write:
$$F(Q \cap Q_1, S_1 \cap S_2) \subseteq F(Q \cap Q_2, S_1)$$

but this shows that:

$$O_1 \cap O_2 < S_1 \cap S_2 \subset S_2$$
 implies $O_1 \cap O_2 < S_2$

In conclusion:

$$F(O_1 \cap O_2, S_1 \cap S_2) \subseteq F(O_1 \cap O_2, S_2)$$

and hence we deduce:

$$F(O_1 \cap O_2, S_1 \cap S_2) \subseteq F(O_1 \cap O_2, S_1) \cap F(O_1 \cap O_2, S_2)$$

and the propozition is proved.

- 3.3. Notation. Let (E, <) be a topogenous space and S a family of nonempty subset of set E which is closed in relation with the reunion and finite intersection. For each S∈S and O∈Dτ< we definie the set f(O,S) as being the maximum element of the family m-inductively orderer (F (O, S), <).</p>
- 3.4. Propozition. Let (X, <) be a topogenous space, S a family of subset of set X, which is closed in relation to the finite intersection. Then the following equality will take place:

$$f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2) = f(O_1 \cap O_2, S_1 \cap S_2)$$

$$(\forall) S \in S, \quad (\forall) O_1 \in D\tau_{\epsilon}, \quad i = 1, 2$$

Proof. From:

$$f(O_1 \cap O_2, S_1 \cap S_2) \in F(O_1 \cap O_2, S_1 \cap S_2)$$

and by 3.2. we get:

$$f(O_1 \cap O_2, S_1 \cap S_2) \in F(O_1 \cap O_2, S_1) \cap F(O_1 \cap O_2, S_2)$$

On the other hand we have: he was the man to the same and the same and

$$f(O_1 \cap O_2, S_1 \cap S_2) \in F(O_1 \cap O_2, S_i), i = 1, 2$$

Therefore we have:

$$f(O_1 \cap O_2, S_1 \cap S_2) < f(O_1 \cap O_2, S_i), i = 1, 2$$

hence we hand: we will be the company of the compan

$$f(O_1 \cap O_2, S_1 \cap S_2) \subset f(O_1 \cap O_2, S_i), i = 1, 2.$$

This shows that:

$$f(O_1 \cap O_2, S_1 \cap S_2) \subset f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2)$$

On the other hand we have:

$$f(O_1 \cap O_2, S_1 \cap S_2) \in F(O_1 \cap O_2, S_1 \cap S_2)$$

$$f(O_1 \cap O_2, S_1) \in F(O_1 \cap O_2, S_1 \cap S_2)$$

$$f(O_1 \cap O_2, S_2) \in F(O_1 \cap O_2, S_1 \cap S_2)$$

$$f(O_1 \cap O_2, S_1 \cap S_2) < f(O_1 \cap O_2, S_1)$$

$$f(O_1 \cap O_2, S_1 \cap S_2) < f(O_1 \cap O_2, S_2)$$
The sequently, we have:

Consequently, we have:

$$f(O_1 \cap O_2, S_1 \cap S_2) < f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2)$$

$$f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2) \in F(O_1 \cap O_2, S_2 \cap S_2)$$

and by hypothesis, < is idempotent and hence there exist a set

$$D \in \mathbb{F} \left(\mathbb{O}_1 \cap \mathcal{O}_2, S_1 \cap S_2 \right)$$

such that:

$$f(O_1 \cap O_2, S_1 \cap S_2) < D < f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2)$$

Now, put:

$$R = \{L \in \mathbb{F}(O_1 \cap O_2, S_1 \cap S_2) | f(O_1 \cap O_2, S_1 \cap S_2) < L < f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2) \}$$
and from:

$$R \subset F(O_1 \cap O_2, S_1 \cap S_2)$$

because $F(O_1 \cap O_2, S_1 \cap S_2)$ is m - inductively ordered we deduce that R has a minimum

 $D_0 \in F(O_1 \cap O_2, S_1 \cap S_2)$, i.e.

$$f(O_1 \cap O_2, S_1 \cap S_2) < D_0 < f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2)$$

The order < is idempotent, hence there exists the set D₀' such that:

$$D_0 \in F(O_1 \cap O_2, S_1 \cap S_2)$$

$$f(O_1 \cap O_2, S_1 \cap S_2) < D_0' < D_0 < f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2)$$

which is a contradiction. This shows that:

$$f(O_1 \cap O_2, S_1 \cap S_2) = f(O_1 \cap O_2, S_1) \cap f(O_1 \cap O_2, S_2)$$

and thus the proposition was demonstrated.

3.5. Proposition. Let (X, <) be a topogenous space, S a family of subset of set X, which is closed in relation to the finite intersection. Then the family:

$$\Omega_{\sigma}^{<}(Q) = \{O \cap f(Q, S) | O \in D\tau_{<}, S \in S\}$$

is the sub - base of a topology wich is defined on E, where Q ∈ Dτ is a given set.

Proof. Let $Y_1, Y_2 \in \Omega^{<}_{\sigma}(Q)$ be two arbitrary sets. In this case we have:

$$Y_1 = O_1 \cap f(Q, S_1), \quad Y_2 = O_2 \cap f(Q, S_2)$$

 $O_1, O_2, Q \in D\tau_<, \quad S_1, S_2 \in S$
 $Y_1 \cap Y_2 = O_1 \cap O_2 \cap f(Q, S_1) \cap f(Q, S_2)$

Consequetly, from proposition 3.4., we obtain:

$$f(Q, S_1) \cap f(Q, S_2) = f(Q \cap Q, S_1) \cap f(Q \cap Q, S_2) =$$

$$= f(Q \cap Q, S_1 \cap S_2) = f(Q, S_1 \cap S_2)$$

This shows that $\Omega_s^*(Q)$ is the sub – base of a topology which is defined on X.

- 3.6. Definition. The topology with the sub base Ω₃(Q) is denoted by τ_c⁸(Q) and it is named the topology generated by S and topogenous structure < relative to set Q.</p>
- 3.7. Notation. The family of all open sets in relation with the topology τ_<^S(Q) is denoted by Dτ_<^S(Q).
- 3.8. Proposition. Let (E, <) be a object of TPG, S a family of subset of E closed with respect to intersection, G ∈ Dτ^S_c(Q) and Q ∈ Dτ_c. Then for every n ∈ N there exists the set G_j∈ Dτ^S_c(Q), j = 1, n and R_j ∈ S such that:

$$G = \bigcup_{j=1}^{n} \{G_j \cap f(Q, R_j)\}$$

Proof. Let $G \in D\tau^{s}(Q)$ In this cas we have:

$$G = \bigcup_{j=1}^{n} \bigcap_{i=1}^{J} Q_i \cap f(Q, S_i)$$
 between the conditions of the second se

where $Q \in D\tau_s$ and $S_i \in S(i=\overline{1,n})$. By using proposition 3.5., we obtain:

$$G = \bigcup_{j=1}^{n} \left[\left(\bigcap_{i=1}^{j} Q_{i} \right) \cap f\left(Q_{i} \bigcap_{i=1}^{j} S_{i} \right) \right]$$

Now, put:

It is easy to observe that:

$$Q_j \in D\tau_{<}, \quad R_j \in \mathbb{S}, \quad j = \overline{1, n}$$

Thus, it results that we have:

$$G = \bigcup_{i=1}^{n} O_i \cap f(Q, R_i)$$

and this completes the proof.

References

[1] A CZÁSZAR, Foundations of general topology. Budapest – Oxford – London – New York – Paris, 1963.

Received: 17. 07. 2001

Academia Trupelor de Uscat Str. Revoluției 7 2400 Sibiu