ON CONGRUENCES ON n-SEMIGROUPS AND ON THEIR BINARY REDUCES

Maria S. Pop

Abstract. Let $(A, ()_{\circ})$ be an n-semigroup $n \geq 3$ with right unit u_1^{n-1} and ρ an equivalence relation on the set A.

ρ is a congruence relation on the n-semigroup (A, ()_a) iff for all a, b ∈ A
and for every sequence c₁ⁿ⁻¹ over A the following statements hold:

 $a\rho b \Longrightarrow (c_1, a, c_2^{n-1}) \circ \rho(c_1, b, c_2^{n-1}) \circ \text{ and } (a, c_1^{n-1}) \circ \rho(b, c_2^{n-1}) \circ ;$

moreover, if u_{n-1}u₁ⁿ⁻² is left unit in A, ρ is a congruence relation of the n-semigroup (A, ()_c) iff for all a, b ∈ A and for every sequence c₁ⁿ⁻¹ over A aρb ⇒ (c₁,a, c₂ⁿ⁻¹)_cρ (c₁,b,c₂ⁿ⁻¹)_c.

If ρ is a congruence relation of the n-semigroup (n-group) $(A, ()_{\circ})$ then ρ is a congruence on binary reduce $red_{u_1^{n-2}}(A, ()_{\circ})(red_cA; c \in A)$. Moreover if u_1^{n-1} is a right unit in $(A, ()_{\circ})$ and for all $a, b \in A$:

 $a\rho b \Longrightarrow (u_{n-1}, a, u_1^{n-2})_{\circ} \rho(u_{n-1}, b, u_1^{n-2})_{\circ} ((c, a, \overline{c}, c^{n-3})_{\circ} \rho(c, b, \overline{c}, c^{n-3})_{\circ}),$ then the converse statement is also true.

This results generalize and improve the result of Usan [8], [9] for n-groups.

MSC 2000: 20N15

Keywords: n-semigroup, n-group, binary reduce of an n-semigroup, n-ary extension of a semigroup, congruence.

Notations. The sequence x_i, x_{i+1},..., x_j will be denoted by x^j_i.
 For j < i, x^j_i is the empty symbol. The sequence x,...x will be denoted

by x.

A set A together with an n-ary operation (), $: A^n \to A$ is called n-groupoid. An n-groupoid $(A, ()_o)$ is called n-semigroup if for any $i \in \{2, \ldots, n\}$ and all $x_1, \ldots x_{2n-1} \in A$ (as in [6] we shall use the abbreviated notation: $x_1^{2n-1} \in A$) the following laws hold:

$$((x_1^n)_o, x_{n+1}^{2n-1})_o = (x_1^{i-1}, (x_i^{i+n-1})_o, x_{i+n}^{2n-1})_o$$

An (n-1)-ad u_1^{n-1} of elements of an n-semigroup A is called a right unit (left unit), if for all $x \in A$ we have $(x, u_1^{n-1})_v = x((u_1^{n-1}, x)_v) = x$ respectively).

An n-semigroup $(A, ()_{\circ})$ is called $n\text{-}group\ [1]$ if for any $i \in \{1, 2, \dots, n\}$ and all $a_1^n \in A$ the equation $\left(a_1^{i-1}, x, a_{i+1}^n\right)_{\circ} = a_i$ has a unique solution in A. In an n-group the unique solution of the equation $\binom{(n+1)}{a}_{\circ} = a$ is called the querelement of "a" and it is denoted by \overline{a} . In this case the (n-1)-ad $\binom{(i-2)}{a} = \binom{(n-i)}{a}_{\circ}$ is a right unit and a left unit, for $\forall a \in A$ and $i \in \{2, \dots, n\}$.

Let $(A, ()_{\circ})$ be an n-semigroup and $u_{1}^{n-2} \in A$ arbitrary fixed elements of A. The structure (A, \cdot) where

$$x \cdot y = \left(x, u_1^{n-2}, y\right)_{a} \tag{1.1}$$

is a semigroup, called the binary reduce of A with respect to the elements u_1^{n-2} ([3], [10]); it is denoted $red_{u_1^{n-2}}(A, ()_{\circ})$ or simple $red_{u_1^{n-2}}A$.

The binary reduce of an n-group A with respect to the elements $\stackrel{(n-3)}{a}$ \overline{a} is a group denoted by red_aA . All the binary reduces of an n-group are isomorphic.

Let (A, \cdot) be a semigroup, $c \in A$ and $\alpha \in End(A, \cdot)$. The structure $(A, (), \cdot)$ where the n-ary operation $(), \cdot : A^n \to A$ is defined by

$$(x_1^n)_{\sigma} = x_1 \cdot \alpha(x_2) \cdot \ldots \cdot \alpha(x_n) \cdot c_i$$
 (1.2)

is called the n-ary extension of the semigroup A with respect to the endomorphism α on the element $c \in A$; it is denoted by $ext_{\alpha,c}(A,\cdot)$.

In [3] is proved that if

$$\alpha^{n}(x) \cdot \alpha(c) = c \cdot \alpha(x), \forall x \in A,$$
(1.3)

then $ext_{\alpha,c}(A, \cdot)$ is an n-semigroup and moreover :

Theorem 1.1. [3] ([2]). If $u_1^{n-1}\binom{(n-3)}{a} \overline{a}$ is a right unit in the n-semigroup (n-group) $(A, ()_c)$, $c = \binom{(n)}{u_{n-1}}\binom{n}{c}$ (or $c = \binom{(n)}{a}\binom{n}{a}$) and $\alpha : A \rightarrow A, \alpha(x) = \binom{u_{n-1}}{x}, u_1^{n-2}\binom{n}{c}$ (or $\alpha(x) = \binom{\overline{a}x \cdot (n-3)}{a}$), then α is

an endomorphism (automorphism) of the binary reduce $red_{u_1^{n-2}}(A, ()_o)$ (of $red_a(A, ()_o)$) and

$$ext_{\alpha,c}\left(red_{u_{1}^{n-2}}(A,()_{\circ})\right) = (A,()_{\circ});$$

 $(ext_{\alpha,c}\left(red_{a}(A,()_{\circ})\right) = (A,()_{\circ}))$
(1.4)

2. Let $(A, ()_{\circ})$ be an n-groupoid and ρ an equivalence relation. If $a_i \rho b_i$; $1 = \overline{1, n} \Longrightarrow (a_1^n)_{\circ} \rho(b_1^n)_{\circ}$ then ρ is called the congruence relation of n-groupoid. The following proposition is true: ρ is a congruence of n-groupoid if ρ is equivalence relation on A and

$$\forall c_1^{n-1}A, (a\rho b) \Longrightarrow (c_1^{i-1}ac_i^n)_{\circ}\rho(c_1^{i-1}bc_i^{n-1})_{\circ}; i = \overline{1, n}.$$

A congruence relation ρ on an n-groupoid (A, ()) is said to be normal iff the following holds

 $\frac{\forall \, a \in A, \, \forall \, b \in A; \, \forall c_1^{n-1} \in A \, (c_1^{i-1}, a, c_i^{n-1}) \circ \rho(c_1^{i-1}bc_i^{n-1}) \circ \Longrightarrow a \rho b; \, i = 1, n.$

Usan [8] showed that if $(A, ()_o)$ is an n-group, $e : A^{n-2} \to A$ its $\{1, n\}$ -neutral operation [6], $f : A^{n-1} \to A$ its inverting operation [7] and ρ is a congruence relation of the n-group $(A, ()_o)$, then the next statements are equivalent:

- ρ is a normal congruence on the n-groupoid (A, ()_e) for every n ≥ 2;
- ρ is a normal congruence of the (n-2) groupoid (A, e) for every n ≥ 3;
- ρ is a congruence of the (n − 1)-groupoid (A, f) for every n ≥ 2;
- ρ is a normal congruence of (A, f) for n = 2.

In the present note we shall study the congruence relations of n-semigroups with a right unit and the connection between them and those of its binary reduces.

Proposition 2.1. If $(A, ()_{\circ})$ is an n-semigroup with u_1^{n-1} a right unit and ρ an equivalence relation on A satisfying the conditions: for all $a, b \in A$

$$a\rho b \Longrightarrow (c_1, a, c_2^{n-1}), \rho(c_1, b, c_2^{n-1}), \text{ for all } c_1^{n-1} \in A$$
 (2.1)

and

$$a\rho b \Longrightarrow (a, c_1^{n-1}), \rho(b, c_2^{n-1}), \text{ for all } c_1^{n-1} \in A,$$
 (2.2)

then ρ is a congruence relation on (A, (),);

2. If (A, ()_c) is an n-semigroup with u₁ⁿ⁻¹ a right unit, u_{n-1}u₁ⁿ⁻² a left unit and ρ an equivalence relation on A satisfying the condition (2.1), then ρ is a congruence relation on (A, ()_c);

Proof. Let $(A, ()_{\circ})$ be an n-semigroup with a right unit u_1^{n-1} and ρ an equivalence relation on the set A satisfying (2.1)

Then, the following statements hold:

$$\forall a,b \in A, \, \forall c_1^{n-1} \in A; \, \left(\bigwedge_{i=3}^n \, \left(a \rho b \Rightarrow (c_1^{i-1} a c_i^{n-1})_\circ \rho (c_1^{i-1} b c_i^{n-1})_\circ \right) \right) \tag{2.3}$$

Indeed, let a, b, c_1^{n-1} be arbitrary elements of the set A such that $a\rho b$. By the assumption (2.1) and associativity of n-ary operation we have the implications:

$$a\rho b \Longrightarrow (c_2 a u_1^{n-2})_{\circ} \rho(c_2 b u_1^{n-2})_{\circ} \Longrightarrow$$

$$\Longrightarrow (c_1 (c_2 a u_1^{n-2})_{\circ} u_{n-1} c_3^{n-1})_{\circ} \rho(c_1 (c_2 b u_1^{n-2})_{\circ} u_{n-1} c_3^{n-1})_{\circ} \Longrightarrow$$

$$\Longrightarrow (c_1 c_2 a c_3^{n-1})_{\circ} \rho(c_1 c_2 b c_3^{n-1})_{\circ}.$$
3) is true for $i = h \in \mathbb{N}$

If (2.3) is true for $i=k\in\{3,\ldots,n-1\}$ then (2.3) is true for i=k+1because we have the implications

$$\begin{split} a\rho b &\Longrightarrow (c_2^k a u_1^{n-k})_{\circ} \rho(c_2^k a u_1^{n-k})_{\circ} \overset{(2.1)}{\Longrightarrow} \\ &\Longrightarrow (c_1(c_2^k a u_1^{n-k})_{\circ} u_{n-k+1}^{n-1} c_{k+1}^{n-1})_{\circ} \rho(c_1(c_2^k b u_1^{n-k})_{\circ} u_{n-k+1}^{n-1} c_{k+1}^{n-1})_{\circ} \Longrightarrow \end{split}$$

$$\Longrightarrow (c_1^kac_{k+1}^{n-1})_\circ\rho(c_1^kbc_{k+1}^{n-1})_\circ$$

 $\Longrightarrow (c_1^k a c_{k+1}^{n-1}) \circ \rho(c_1^k b c_{k+1}^{n-1})_{\circ}.$ For k = n - 1 from here we have $a\rho b \Longrightarrow (c_1^{n-1}a)_{\circ}\rho(c_1^{n-1}b)_{\circ}$. Moreover, if u_1^{n-1} is a right unit and $u_{n-1}u_1^{n-2}$ is a left unit, then

$$\forall a, b \in A, \forall c_1^{n-1} \in A; a\rho b \iff (c_1^{i-1}ac_i^{n-1})_{\circ}\rho(c_1^{i-1}bc_i^{n-1})_{\circ} \text{ for } i = 1, \dots, n$$

Indeed, by assumption (2.1) we have (2.4)

$$(u_{n-2}, a, c_1^{n-2}), \rho(u_{n-2}, b, c_1^{n-2}),$$

and by (the just proved) (2.3) for i = n we have

$$(u_{n-1}u_1^{n-3}(u_{n-2}ac_1^{n-2})_{\circ}c_{n-1})_{\circ}\rho(u_{n-1}u_1^{n-3}(u_{n-2}bc_1^{n-2})_{\circ}c_{n-1})_{\circ}\Longrightarrow$$

$$\Longrightarrow (ac_1^{n-1})_{\circ}\rho(bc_1^{n-1})_{\circ}$$

Moreover, putting the elements $c_1^{n-1} \in A$ in (2.1) we obtain:

$$(u_{n-2}au_1^{n-2})_{\circ}\rho(u_{n-2}bu_1^{n-2})_{\circ} \Longrightarrow$$

$$\Longrightarrow (u_{n-3}(u_{n-2}au_1^{n-2})_{\circ}u_{n-1}u_1^{n-4})_{\circ}\rho(u_{n-3}(u_{n-2}au_1^{n-2})_{\circ}u_{n-1}u_i^{n-4})_{\circ}\Longrightarrow$$

$$\Rightarrow (u_{n-3}^{n-2}au_1^{n-4})_{\circ}\rho(u_n^{n-2}au_1^{n-4})_{\circ} \Rightarrow \dots \Rightarrow \dots \Rightarrow \dots$$

$$\implies (u_{n-1}(u_1^{n-2}au_1)_{\circ}u_2^{n-1})_{\circ}\rho(u_{n-1}(u_1^{n-2}bu_1)_{\circ}u_2^{n-1})_{\circ} \implies a\rho b.$$

Corollary 2.2 If $(A, ()_{\circ})$ is an n-group and ρ an equivalence relation on A satisfying (2.1) then ρ is a congruence relation on $(A, ()_{\circ})$.

We will give in the sequel a property of the congruences on n-semigroups and their binary reduces.

Proposition 2.3. Let $(A, ()_{\circ})$ be an n-semigroup and $u_1^{n-2} \in A$ arbitrary fixed elements. Then the following hold:

- If ρ is a congruence relation on the n-semigroup A, then ρ is a congruence on the red_{u,n-2} (A, ()_o);
- If ρ is a congruence on semigroup (A,·) α ∈ End(A,·) and ∃c ∈ A such that (1.3) holds and

$$\forall a, b \in A, \forall c_1^{n-1} \in A; a\rho b \Longrightarrow \alpha(a)\rho\alpha(b),$$
 (2.5)

then ρ is a congruence on n-semigroup $ext_{\alpha,c}(A,\cdot)$

The proof follows immediately.

By using Theorem 1.1 above we have too:

Corollary 2.4. Let (A, (),) be an n-semigroup with $u_1^{n-2} \in A$ a right unit. If ρ is a congruence on $red_1^{n-2}(A, (),)$ and the following relation holds

$$\forall a, b \in A, \forall c_1^{n-1} \in A; a\rho b \Longrightarrow (u_{n-2}, a, u_1^{n-2}) \circ \rho(u_{n-2}, b, c_1^{n-2}) \circ (2.6)$$

then the ρ is a congruence on $(A, ()_{\circ})$ too.

Corollary 2.5. If $(A, ()_c)$ is an n-group and $c \in A$, then ρ is a congruence on the n-group A, if and only if ρ is a congruence on the binary reduce $red_c(A, ()_c)$ and

$$\forall a, b \in A; a\rho b \Longrightarrow (c, a, \overline{c}, {^n}c^3) \circ \rho(c, b, \overline{c}, {^n}c^3) \circ (2.7)$$

holds.

References

- Dörnte, W., Untersuchungen über eine verallgemeinerten Gruppenbegriff, Math.Z. 29 (1928), p.1-19
- Hosszú, M., On the explicit form of n-group operations, Publ.Math.Debrecen, 10, 1963, p.88-92
- Pop S. Maria, Contribuții la teoria n-semigrupurilor, Teza de doctorat, Univ.Babeş-Bolyai, Cluj-Napoca, 1977
- Pop S. Maria, Congruente in n-semigrupuri, Bul.Ştiinţ.Seria B, vol.VI, Univ. Baia Mare, 1983, p.5-10
- Purdea, I., Pic, Gh. Tratat de algebră modernă, vol.I, Editura Academiei R.S.R., 1977
- Usan J., Neutral operation of n-grupoids, Rev of research, Fac. of Sci. Univ of Novi Sad, Math. Ser 18,2(1988), 117-126(in Russian)
- Usan J., A comment on n-groups, Rev of research, Fac. of Sci. Univ of Novi Sad, Math. Ser 24,1 (1994), 281-288
- Usan J., On congruences on n-groups, Novi Sad Journal of Math. 27,2(1997), 89-100
- Usan J., Congruences of n-group and of associated Hosszú-Gluskin algebras, Novi Sad Journal of Math. 28, 2(1998), 91-108
- Zupnik, D., Polyadic semigroups, Publ.Math., Debrecen, 14, 1967, p.273-279

Received: 16, 04, 2001

North University of Baia Mare Department of Mathematics and Computer Science Str. Victoriei 76, 4800 Baia Mare E-mail: mspop@univer.ubm.ro ROMANIA