Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, Vol. XVII(2001), Nr. 1-2, 107-112

ON CONGRUENCES ON n-SEMIGROUPS AND ON THEIR BINARY REDUCES

Maria S. Pop

Abstract. Let $(A, ()_{\circ})$ be an n-semigroup $n \geq 3$ with right unit u_1^{n-1} and ρ an equivalence relation on the set A .

ρ is a congruence relation on the n-semigroup (A, ()_c) iff for all a, b ∈ A
and for every sequence c₁ⁿ⁻¹ over A the following statements hold:

$$a\rho b \Longrightarrow (c_1, a, c_2^{n-1}) \circ \rho(c_1, b, c_2^{n-1}) \circ \text{ and } (a, c_1^{n-1}) \circ \rho(b, c_2^{n-1}) \circ ;$$

moreover, if u_{n-1}u₁ⁿ⁻² is left unit in A, ρ is a congruence relation of the n-semigroup (A, ()_c) iff for all a, b ∈ A and for every sequence c₁ⁿ⁻¹ over A aρb ⇒ (c₁,a, c₂ⁿ⁻¹)_oρ (c₁,b,c₂ⁿ⁻¹)_c.

If ρ is a congruence relation of the n-semigroup (n-group) $(A, ()_c)$ then ρ is a congruence on binary reduce $red_{u_1^{n-2}}(A, ()_c)(red_cA; c \in A)$. Moreover if u_1^{n-1} is a right unit in $(A, ()_c)$ and for all $a, b \in A$:

$$a\rho b \Longrightarrow (u_{n-1}, a, u_1^{n-2})_{\circ} \rho(u_{n-1}, b, u_1^{n-2})_{\circ} ((c, a, \overline{c}, c^{n-3})_{\circ} \rho(c, b, \overline{c}, c^{n-3})_{\circ}),$$

then the converse statement is also true.

This results generalize and improve the result of Usan [8], [9] for n-groups.

MSC 2000: 20N15

Keywords: n-semigroup, n-group, binary reduce of an n-semigroup, n-ary extension of a semigroup, congruence.