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A PRECONDITIONING METHOD OF ILL CONDITIONED
MATRICES USING WAVELET BASES

Nicolac POP

Abstracl After discretizations with respect to two different wavelet bases of
the partial differential eqmations (PHEa), we oblain a big sparse ill-conditioned
linear system of equations. For dizeretizing of PDEa with wavelel method, this
paper presents & proconditicning technigee for linear gystems imvolving the op-
erator such Lhal the syrtem becomes s sparse systemns in the wavelets basie, In
fact the condition number of the matrix involved in the solulion of PDEs, after
a ciagonal preconditioning appesrs o be bounded. The orthogonal properly of
the wavelets is used to construct efficient. iterative methods for the solution of the
resultant linear algebraic systems.
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1. Introdunetion. The problem to be efficient a preconditioner for linear
systems Ax=b, one hopes thal: ihe preconditioner C can be found easly
ar (' can be computed by little computational cost, the linear system Cy=d
reguires ouch less operations than Ax=Db, and the speclrim of C 'A must be
eomsiderably better than that of A Applying wavelets to discretize dilferential
equation appears Lo be a very attractive idea. In finite clement type methods,
piecewise polynomisl trial fonctions mey be replaced by wavelets | Wavelet-

yalerkin medhod).

Among the good features of the wavelol method (WM) we have a class
of fast algorithms, all based on the fast wavelel transform, such as the fasl
matrie-vector moultiplicalaon.

2 Wavelet bases. Let he the partial differential equation

|:|:| f.rl..l.=_l|"'.

We introduce & funetion i(z) € L2(R) called Lhe iather wavelet (or scaling
function), with a compact support [0a], & = 0; see [4]. The function wiz)
has the property thal

(2] olo—k), keZ
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form an orthonormal sequence in LAH(R). Lot Vi be the closad linsar subepace
of LR} generatesd By (2). The multiresolntion analysis (MRA}, depending
on this 2(x), is given as follows:

(i} fix) € Vv, if only if F(2z) & Vi;

':ﬂ.] gl C PE—J C .I"'} = I'G"H C o

(i) U=V, = LA(R) and =1, = g,

(iv} The sequence (2) forms a Riesz hasis of |

et W, denote the arthogonal eomplement of Viin Vi, e, Vi =V¥o
W, From MRA (ifi), we also have % Wi = LY R). There exists At least
ome: funetion w4(z) & W, such Lhat

(3 e — k), ke Z

i an orthonormal basis of Wa {see [2] and [3]). The ¥(r) is ealled the mother
wavelet, We then constrgct Lhe Iollowing tw warelel sequences:

() Paale) = P2 1) Gpeg

and

(5] Poelx) = 20000, k), JkezZ

The: wavelet sequence 144 (2) } forms a Riess: basis of Soholey APaGes
H*R) for 5 = 0 [see [3]).

The operator I from (1) can he projected on the subspace Vy or on the
subspace Wi (] is fixed) with respoct 1o base ) respectively to base Hy:

(6] B, = fP;',.I;'iEJ:'J:.« kez
(7] i T (YT T
it ST Lol 2o

Here B comess from the father wavelel w(x) and s comes from Lhe
obtained as ap antocarrelation funclion of 4 compactly scaling function of
the type we justdeseribed above, see [5.6,7). This function g is:

(3) 0(z) 1= (p ¥ () ()
where * denotes the convolution product, and for integer value of x this
boecoines
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(9) Uﬁ?ifwww#—kﬁx

We will indicate by [7; the linear apan of the set {8{2x — k). k e} It
prssible Lo prove that{{’; } [orms a multiresolution analysis where B plays Lhe
role of (nomorthogonal] scaling function. The set [2e(¥x - k). K clisa
Riese's baxis for U;.

3. Preconditioning techniques. Suppose that T. from (1) is & sy
metric and coerciveoperator. Let uy = ¥ty be the (alerkin projection
af u in Ba, the cocfficients s AT then determined by following linear systorm
of equations

(10} Au= f.

The matric A is sparse, ket P be the permutation matrix which relabels
Wi 10 such wuy that

. k B OY 7
(11} A_P(u i P

Let N=dim B, then B is a full square matrix with arder OflogN). As a
result, the eigenvalues of A are mostly 1, with a few exceptions cansed by
the wavelels near the boundary.

The further improve the performance of the -.*xmjngri!-:ﬁ gradient method,
we have a natural choice of precomditioner [ matrix A, Let 13 be the matrix
in (11}, since B is small, it is easy to mvert 1 by a direct method. Evidently
B and B! are symmetric and positive definite, henee there exists Cholesky
decompeosition, sy B-l= LL'. Them 55T is a good preconditioner where

e i
(12) S—P(ﬂ I).

That is instead of solving Ax—=h, we solve Lhe equivalent problem

(13) T A8y =57, == Sy,

where 5T AR 5 8 well-conditioned matrix., and the comdition number is uni-
foernly bounded by & constant which does nob depend on j, the action of P
can be easily derived during the compulation, 5O We only have to compule
and store the lower triangular malros L which has O{log’N) entries. Theo-
retically the comdition number of STAS is one. The preconditioner 3 is sl
possible by the orthogonality properiy of wavelets, see [8.9].
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Alternatively, one could think of using olher preconditioning technigues

based not on Lhe MBA UV; but on the inlerpellating MRA U itsclf. In fact,
following D). Donoho [7], one may introduce the space [5;C U; defined by

(14} U= span{fyrap1. & € &}

The change of basis of the spaces U and 7; s performed by means of
Lthe [ast interpolating wavelet transform,which has the same alporithmicsl
gstructure of the usual [ast wavelel transform. Resmcaling the matrix arising

[rom Wavelet Galerkin method, by a diagonal matrix P one obtains a mairix
whose ocondition number satisfies only

(15) cond{PAP) < C'¥.

Such technique, themgh ronch less effective, may be still of interest, in view
of an application, where the rumber of nnknowns is reduced by considering
cnly thoee degrees of feedom which are relevant to the problem.
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