MANN ITERATION FOR DIRECT PSEUDOCONTRACTIVE MAPS

Ştefan M. ŞOLTUZ

Abstract. In this note we introduce a new class of maps. Let X be a real normed space, and $B \subset X$ be a nonempty set. The map $T: B \to B$ is direct pseudocontractive if there exists $k \in (0,1)$ such that

$$||Tx - Ty||^2 \le k ||x - y||^2 + ||(I - T)x - (I - T)y||^2, \forall x, y \in B.$$

For T a direct pseudocontractive map, we prove the convergence of Manniteration to the fixed point of T.

MSC. 47H10

Keywords: preudocontractive maps, fix points, iterative method, convergence

 Introduction. Let H be a real Hilbert space, let B ⊂ H be a nonempty, convex set. Let T : B → B be a map. Let x₁ ∈ B, be an arbitrary fixed point. We consider the iteration

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n.$$
 (1)

The sequence $(\alpha_n)_{n\geq 1}$ satisfies: $(\alpha_n)_{n\geq 1}\subset (0,1), \sum_{n=1}^{\infty}\alpha_n=\infty$, and $\sum_{n=1}^{\infty}\alpha_n^2<\infty$. The last relation implies that $\lim_{n\to\infty}\alpha_n=0$. A prototype for $(\alpha_n)_{n\geq 1}$ is $(1/n)_{n\geq 1}$.

Definition 1 The map T is called pseudocontractive if

$$\|Tx-Ty\|^2 \leq \|x-y\|^2 + \|(I-T)x-(I-T)y\|^2, \forall x,y \in B.$$

In [7] we can see an example of a Lipschitz pseudocontractive map with a unique fixed point for which every non trivial Mann sequence fails to converge. The set B is nonempty, convex and compact.

Definition 2 The map T is called strongly pseudocontractive if there exists $q \in (0,1)$ such that

$$||Tx - Ty||^2 \le ||x - y||^2 + q ||(I - T)x - (I - T)y||^2, \forall x, y \in B.$$

In [1], [2], [3], [5], [8], [11] the map T is considered strongly pseudocontractive. The sequence $(x_n)_{n\geq 1}$ given by (1) strongly converges to a fixed point of T.

We introduce the following class of maps:

Definition 3 The map T is called direct pseudocontractive if there exists $k \in (0,1)$ such that

$$||Tx - Ty||^2 \le k ||x - y||^2 + ||(I - T)x - (I - T)y||^2, \forall x, y \in B.$$
 (2)

The class of direct pseudocontractive maps is nonempty. If T is a contraction, then T is a direct pseudocontractive map. Picard -Banach Theorem can't be used to find the fixed point of a direct pseudocontractive map. Instead, Mann iteration (1) can be successfully used. Our aim is to give a convergence result for (1). We denote by $F(T) := \{x \in B : Tx = x\}$.

Remark 1 If T is a direct pseudocontractive map and has $F(T) \neq \emptyset$, then T has a unique fixed point.

Proof. Let x^* and y^* be two distinct fixed points. From (2) we have

$$||Tx^* - Ty^*||^2 \le k ||x^* - y^*||^2,$$

$$||x^* - y^*||^2 \le k ||x^* - y^*||^2,$$

$$(1 - k) ||x^* - y^*||^2 \le 0, k \in (0, 1).$$

Hence $x^* = y^*$. Thus $F(T) = \{x^*\}, \square$

The following lemma can be found in [10] as Lemma 4. Also, it can be found in [12] as Lemma 1.2, with an other proof. In [1] can be found as Lemma 2, the proof is similar to the proof of Lemma 1 from [8].

Lemma 4 [1], [10], [12] Let $(a_n)_{n\geq 1}$ be a nonnegative sequence which verifies where $a_{n+1} \leq (1-\lambda_n)a_n+\sigma_n$, $(\lambda_n)_{n\geq 1} \subset (0,1)$, $\sum_{n=1}^{\infty} \lambda_n = \infty$ and $\sigma_n = o(\lambda_n)$. Then $\lim_{n\to\infty} a_n = 0$.

The following result is proved in [4].

Lemma 5 [4] Let H be a Hilbert space, the following relation is true for all $x, y \in H$, and for all $\lambda \in (0,1)$:

$$\|(1-\lambda)x + \lambda y\|^2 = (1-\lambda)\|x\|^2 + \lambda\|y\|^2 - \lambda(1-\lambda)\|x - y\|^2.$$
 (3)

2. The main result.

We are able now to give the main result:

Theorem 6 Let H be a real Hilbert space, let $B \subset H$ be a nonempty, convex, bounded and closed set and let $T : B \to B$ be a continuous, direct pseudocontractive map, with $F(T) \neq \emptyset$. Then for each x_1 a fixed point in B, the sequence $(x_n)_{n\geq 1}$ given by (1) converges strongly to the unique fixed point of T.

Proof. Let $x^* \in F(T)$. From remark 2 we know that $F(T) = \{x^*\}$. Using (2) and (3) we get

$$\|x_{n+1} - x^*\|^2$$

$$= \|(1 - \alpha_n)x_n + \alpha_n Tx_n - x^*\|^2$$

$$= \|(1 - \alpha_n)(x_n - x^*) + \alpha_n (Tx_n - x^*)\|^2$$

$$= (1 - \alpha_n) \|x_n - x^*\|^2 + \alpha_n \|Tx_n - x^*\|^2 - \alpha_n (1 - \alpha_n) \|Tx_n - x_n\|^2$$

$$\leq (1 - \alpha_n) \|x_n - x^*\|^2 + \alpha_n k \|x_n - x^*\|^2 +$$

$$+ \alpha_n \|Tx_n - x_n\|^2 - \alpha_n (1 - \alpha_n) \|Tx_n - x_n\|^2$$

$$\leq [1 - (1 - k)\alpha_n] \|x_n - x^*\|^2 + \alpha_n^2 \|Tx_n - x_n\|^2 .$$

The sequence $(\|Tx_n - x_n\|^2)_{n \ge 1}$ is bounded, because B is bounded. There exists M > 0 such that $\|Tx_n - x_n\|^2 < M$, for all $n \ge 1$. We denote $a_n := \|x_n - x^*\|^2$, and we get:

$$a_{n+1} \le [1 - (1 - k)\alpha_n]a_n + \alpha_n^2 M.$$

Let us denote by

$$\lambda_n : = (1 - k)\alpha_n,$$
 $\sigma_n : = \alpha_n^2 M.$

Observe that $\lambda_n = (1 - k)\alpha_n \subset (0, 1)$, for all $n \ge 1$. We have $\sum_{n=1}^{\infty} \lambda_n = (1 - k)\sum_{n=1}^{\infty} \alpha_n = \infty$. The following relation is true

$$\lim_{n \to \infty} \frac{\sigma_n}{\lambda_n} = \lim_{n \to \infty} \frac{\alpha_n^2 M}{(1-k)\alpha_n} = \frac{M}{1-k} \lim_{n \to \infty} \alpha_n = 0.$$

Thus, we have $\sigma_n = o(\lambda_n)$. From Lemma 1 we get $\lim_{n\to\infty} a_n = 0$. Hence $\lim_{n\to\infty} \|x_n - x^*\| = 0$. The proof is complete.

Using the Schauder fixed point theorem we give the following corollary:

Corollary 7 Let H be a real Hilbert space, let $B \subset H$ be a nonempty, convex, compact set and let $T: B \to B$ be a continuous, direct pseudocontractive map. Then for each x_1 a fixed point in B, the sequence $(x_n)_{n\geq 1}$ given by (1) converges strongly to the unique fixed point of T.

References

- S.S.Chang, Y.J. Cho, B.S. Lee, J.S. Jung, S. M. Kang, Iterative Approximations of Fixed Points and Solutions for Strongly Accretive and Strongly Pseudo-contractive Mappings in Banach Spaces, J. Math. Anal. Appl. 224 (1998), 149–165.
- [2] C. E. Chidume, Approximation of Fixed Points of Strongly Pseudocontractive Mappings, Proc. Amer. Math. Soc. 120 (1994), 546-551.
- [3] C. E. Chidume, C. Moore, Fixed Point Iteration for Strongly Pseudocontractive Maps, Proc. Amer. Math. Soc. 127 (1999), 1163-1170.
- [4] S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- [5] G. G. Johnson, Fixed Points by Mean value iterations, Proc. Amer. Math. Soc. 34 (1972), 193-195.
- [6] R. W. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 504-510.
- [7] S.A. Mutangadura, C.E. Chidume, An Example of the Mann Iteration Method for Lipschitz Pseudocontractions, internal report ICTP Trieste (2000), http://www.ictp.trieste.it
- [8] J. A. Park, Mann-Iteration for Strictly Pseudocontractive Maps, J. Korean Math. Soc. 31 (1994), 333-337.
- R. U. Verma, A Fixed Point Theorem Involving Lipschitzian Generalized Pseudo-contractions, Proc. Royal Irish Acad. 97A (1997), 83-86.
- [10] X. Weng, Fixed Point Iteration for Local Strictly Pseudocontractive Mapping, Proc. Amer. Math. Soc. 113 (1991), 727-731.
- [11] H. Y. Zhou, Stable Iteration Procedures for Strong Pseudocontractions and Nonlinear Equations Involving Accretive Operators without Lipschitz Assumption, J. Math. Anal. Appl. 230 (1999), 1-30.
- [12] H. Zhou, J. Yuting, Approximation of Fixed Points of Strongly Pseudocontractive Maps without Lipschitz Assumption, Proc. Amer. Math. Soc. 125 (1997), 1705-1709.
 "T. Popoviciu" Institute of

Received: 12.03.2001

Numerical Analysis Gh. Bilascu 37, P.O. Box 68-1, 3400 Cluj-Napoca, Romania.

144 e-mail: ssoltuz@ictp-acad.math.ubbcluj.ro