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ABOUT VISUAL COMPLEX FUNCTIONS

Lidia Elena KOZMA

Let's take our first look at how these new geometries differ from Euclid's. In
any triangle (T)
1). (Angle sum of T) =11
2). Angular excess E(T)=Angle sum of T) -TT
Euclidian geometry is thus characterized by the vanishing of E(T)
In spherical geometry the angle sum is greater than [1:
E=0 (Gauss)
In hyperbolic geometry the angle sum is less than IT-
E<0(H. Lambert)
(rauss never published his ideas on non- Euclidian geometry, and the two men who
are usually credited for their independent discovery of hyperbolic geometry are linos
Bolyai (1829) and Nikolai Lobachevsky (1832). In 1868 Eugenio Beltrami
discovered that hyperbolic geometry could be given a concrete interpretation, via "
differential geometry" (the so-called) pseudosphere (figure 1)
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Figure () shows how we can then define foe example a circle of radius 7 and centre
p. Given three points on the surface we may join them with geodesics to form a
triangle of shows tho such triangles T, and T; Cleary E(T,)>0 like a triangle in
spherical geometry, while E(T)< 0, like a triangle inhyperbolic geometry {figure 2)

Figure 2

Gaussian curvatore

In 1827 Gauss published analysis of the intrinsic and extrinsic geometry of
surfaces. He introduced a quantity X (p). This functions X (p) is called the Gaussian
curvature, Gauss defined X (p) as follows:

Let (7) be a plane contgining the normal vector B 10 the surface at p, and let

K be the (signed) curvature at p of the curve in which () intersects the surface. The

sign of £ dependes on whether the centre of curvature is in the direction n or — n.
The so-called principal curvatures are the minimum K, and the maximum

!i‘.'m.vﬂu:snffu[ﬂmmusabmnﬂ.ﬁauﬁdeﬁﬂedfasthepmduﬂnfrh:

principal curvatures

Kok Ko (3)
(see fig.1).
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The intrinsic significance of K is exhibited in the following fundamental
result: In A is an infinitesimal triangle of area &4 located at the point P, then
E(A)=K(p)-d4 (4)

Surfaces of Constant Curvature

Consider a surface such that X (p) has the same value £ at Very point p; we
call this a surface of constant curvature. For example: a plane is a surfice of constant
curvature X = 0, a sphere is an example (not the only one) -see fig.4 of a surfage of
constant positive curvaturc; and the pseudosphere (fig.3) of a surface of constant
negative curvature. In the case of a surface of constant curvature {and only in this
cage) we find that

E(r) =K [[da=K - s(r)
T

Figure 3 Figure 4
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Mations of the plane, sphere and psendosphere a3 MBbius
transformations

The Euclidian plane is identified with C its motion are represented by the
particularly simple Mébius transformation of the form M (z)=az + b . The motions
of spherical and hyperbolic geometry are also Mabius transformations!

Stereographic projection onto C fields a conformal map of the sphere, and
the rotations of the sphere thus become complex functions actng on this map. They

az+b
are the Mobius transformations of the form: M{(2)== (Gauss, 1819).

bz+&
Following the same pattern, it is also possible to construct conformal maps (in T} of
the pseudosphere thereby transforming its motions into complex functions, The most
convenient of these conformal maps is constructed in the unit disc.

The motions of hyperbolic geometry then turm act to be the Mbbius

: s az+b -
automorphisms of this circular map: M (z) = - {H Poincare, 1382).

Z+d

The fact that a surface has not constant curvature (fig. 2) staps the movement in the
complex plane, illustrated by holomorphe functions.

We took the liberty to characterize in the following lines, the non-holomorphe
functions from the point of view of some possible geometries.

Naturally, we'll replace K(p), the Gauss curvature with the areolar
differential of Pompein Dimitrie (1873-1954), knowing the fact that this differential
will indicate the distance grade of a function from holomorphism in the point p.

r(z2)dz

lim =1I'£'—]'
50 || dxdy &z Jp
b

where I - simple conex domain limited by y - smooth and p € I} (belongs).
The Stokes-Pompeiu formula is

T
2i || ==dxdy=® f(z)dz.
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We'll define the E(p) ecarte in these geometries with: E(p) = K(p)-dA . after

the model given by Gauss, but X(p) = 2!{%} and so .E{p] =2£[_gl, -dd

r
Obviously if f(z)e#(D), (b’}ps.& than %{B]=ﬂiﬁf{p}=ﬂ and
E(p)=0. Using this formula we cannot reobtain the cases: K(py>0 or
K(p)<0,

We'll name the areolar differential £'( p) = 2{%) - complex curvature,
P

What sort of geometries (surfaces) can generate nuﬁ'hnkumc»rphe funetion?
Example:

() Hz)=7T+g(2), H{I}Er{n},?’=ﬁ;ﬂ1m
$f)d=[(z+e(d =Gz + fola)de=fredz+0-
4 4 14 ¥ ¥

=_|'xd:+ ycl_‘p+r'.[xafy~ vax=U+iV.
4 ¥
If {) smooth the function {/ =_|.J:cfr+}'cﬂ==ﬂ according to the Stokes theorem

¥
and K(p)=2i so E(p)=2id4 .
We could interpret this result in the following way. The f (z) function
gcnerates Iwo geometries: one of constante curvature - null - and an imaginary one
having complex constant curvature purely imaginary. An other situation would be if

K{F]EEE% a complex function K{p}=U'(p)+iV(p) of point p. In this

situation {/( )} and F( p) correspond to some geometries on surfaces with variahie
(non constant) curvature, obtained by a bijection of stereagraphic projections type.
How do we characterize the holomorphe fimctions in the vecinity of isolated
singularities?
We'll take an example:
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f(z)= -!—, z = simple pole

In this situation f(2)=—= ---&nd K{p)=—5. If we surround the pole with a

2 |z’ I|

: S, 2 _
disk of & ray centered in it, then K(p)=— and E(p)=27i.
A &
The case of essential singularities is more complicated because in their
vecinity the finction can take any value (with one exception).
It seems we can construct double geometries for any complex holomorphe or
non function on surfaces with constant or non-constant curvafire.

[ find that the most interesting fact is the possibility of smudying the
movement on a surface with non-constant curvature {1.) with the help of some

complex functions with areolar differemtial (complex curvature) a Ffinction
K{p)=U{p)+i¥F(p), p- apoint in the plane T (complex plane) obtained by a

bijection convenient to the surface (2.).
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Figure 5
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