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1. Preliminaries

In 1969 D.D. Stancu ([6)] introduced and studied the positive and linear oper-

ator Py(na’ﬁ )7 depending on two real non-negative parameters o and § which satisfy
the condition 0 < a < f. This operator is defined on C([0,1]) and associates to
any function f € C(]0,1]) the polynomial
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Note that in (1.1) p,, , (z) are the fundamental polynomials of Bernstein, i.e.
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D.D. Stancu proved in ([6]) a convergence theorem for the sequence (Pﬁf"ﬁ ¥ ) .
me

and discussed about the approximation order of a function f € C([0,1]) by P,Sf”ﬁ ) 1,
using the first order modulus of smoothness.

The notion of B-continuous function was introduced by K. Bogel ([4]).

Using the method of parametric extensions, we constructed in ([3]) a GBS
operator of Stancu type, defined on the space Cy(I?) of B-continuous functions on
the unit square I? = [0,1] x [0, 1].

More exactly, in ([3]) we introduced the sequence of GBS operators of Stancu-
type (Sm.n)m.men, where Sy, @ Cp(I?) — Cp(I?) associates to any function
f € Cy(I?) the pseudopolynomials:
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In (1.3) a1, 81, g, B2 are real non-negative parameters satisfying the conditions
0<a; <B1,0< az < fa.

Note that for a; = 1 = 0 and as = (52 = 0 the operator S,,.,, reduces to the
classical GBS operator of Bernstein.

Applying the Korovkin-type theorem for the approximation of B-continuous
functions due to Badea C., Badea I., and Gonska H.H., (see([2]), in ([3]) we estab-
lished the following result:

(3)

Theorem 1.1. The sequence (Sp.n)mnen converges to f, uniformly on I? as
m and n tend to infinity, for any f € Cy(I?).

Using the mixed modulus of smoothness wyizeq (for this concept see ([2])), in
the same paper ([3)], we proved the results contained in the following two theorems

Theorem 1.2. For any f € Cy(I?), any 61,02 > 0 and any (x,y) € I2, the
inequality:

‘(Sm,n)(xa y) — flz,y)| <

< {1 + m\/m + 4(0(1 - ﬁl.’L‘)2 + m\/ﬂ + 4(0[2 - ﬁQy)2+
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holds.

Theorem 1.3. For any f € Cy(I?), and any (x,y) € I?, the inequality:
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holds.
The aim of the present paper is to give some refinements of the inequalities
(1.4) and (1.5)

2. Main results

Theorem 2.1. If:

. 1 1
(i) a1 € [071]7 b1 € o, 201], ag €0, 1], B2 € o, 203],
o 11 , 11 ,
(ii) aq € [Z’ 5], 01 € [4ai,2a1], ag € [Z’ 5], 02 € [4a3, 2as],
the inequality
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holds, for any f € Cy(I?) and any (x,y) € I°.

Proof. From the properties of the mixed modulus of smoothness and from the
Theorem 1.3, it is suficient to prove that under the hypothesis (i) or (ii) we have
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The first inequality in (2.2) can be written in the form

Let us to suppose that 0 < a3 < 81 < 2ay. Then (2.3) is possible if and only

1
if 402 < 2a4, ie. a3 € |0, 2}. For the quantity 4a?, we have the possibilities

1 1
403 < oy or a; < 4a?. We get a1 € [O, 4}, respectively a; € } .So, we can

4’2
1 11 )
conclude that for a; € |0,~|,01 € [a1,2aq] or for a1 € |=, = |, B1 € [4af,2a4],

4 4’2
the inequlity (2.3) holds.
The second inequality in (2.2) can be written in the form

9) 4ai < Ba.

1
Similar to the proof of (2.3), we get that for as € {0, 4], B1 € [ag,2as] or
oo € q
11
{4, 2] , B2 € [4a3, 2as], the inequlity (2.4) holds.
In a similar way, starting with the Theorem 1.2, one proves

Theorem 2.2. If
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(i) oy € [4, 2] , B € [a1,403], as € [
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or
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(i) oy > ok pr € [on,201], ap > 5 Br € [ag, 202],
the inequality
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holds, for any f € Cy(I?) and any (z,y) € I
Theorem 2.3. If
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or
(W) fr>1, oq € [0»\/267]

the inequality

|(Smnf)(‘r7y) - f(x’y)l <
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holds, for any f € Cy(I?) and any (z,y) € I
Starting with the Theorem 1.3, one proves

Theorem 2.4. If

1 <1, a1 € {51—\/57,621]ﬂ[07+00}
and
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the inequality
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holds, for any f € Cy(I?) and any (z,y) € I
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