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1. Introduction.

Consider the initial value problem

y'(z) = f(z,y(x), y(xo) = yo, (1.1)

where f : [a,b] x R™ — R™is sufficiently smooth and z¢p = a and yp,y €
R™. We discuss implicit Runge-Kutta method for numerical integration of
(1.1), having a special form, and called semi-explicit or diagonally im-
plicit.

This kind of methods have also been investigated by many authors:
J.C. Butcher [2], [3], K. Burrage [1], J. R. Cash [4], E. Hairer, G.
Wanner and C. Lubich [7], [8], Houwen van der, P. S. Sommeijer
[9], etc.

The aim of this work is the derivation of a few classes of semi-explicit
Runge - Kutta methods of order 2 with two and three stages for the initial
value problem (1.1) These methods are A - stable and L - stable, thus they
are suitable for solving numerically stiff problems.

Without loss of generality, we may assume that (1.1) is a scalar problem.

2. Preliminaries
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Let x,, n = 0,1,2,..., N be equal spaced points in [a,b], with z¢o =
a, Tpn —Tpn_—1=h,n=0,1,2,..., N, and let y,, be the approximate value of
y(zy), where y(x)is the exact solution of the local initial value problem

Y'(x) = flz,y(@); y(zn) = yn- (2.1)

We recall now some definitions
Definition 2.1. An implicit Runge - Kutta method with s stages for
the problem (1.1) is defined by the equations

S
Kim =hf | @, yn + > agkin |, i=1,2,..s (2.2)
j=1
S
YUni1 = Un+ ¥ bikin; n=0,1,2,... (2.3)
j=1

where 2!, = x, + c;h, i = 1, sand b;, a;ij, c; are real parameters.
The formulas (2.2) and (2.3) are usually displayed in the Butcher’s
tableau
cl A (2.4)
b

where
T.;T A — () i
c=(c1,¢2,...,¢5) ;b7 = (b1,ba, ... bs); A= (asj); 1,7 =1,2,...,8

and we have to have
c = Ae, (2.5)

where e = (1,1,...,1)T € R®,

Definition 2.2. The Runge-Kutta method defined by (2.2) +(2.3) or
by (2.4) is called semi-implicit if a;; = Ofor all j > i. A semi-implicit
method is called semi-explicit method or diagonally implicit if we have
a; = M foralli=1,2,..s.

So, the matrix A for a semi-explicit Runge-Kutta method has the form

A 0 0 - 0
a1 A 0 cee 0

A= a3z azx X - 0 , (2.6)
as1 Qg2 Qg3 - A
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and the equation (2.5) gives.

c1 = A,
C2 = az1 + A,
c3 =as1 +agz+ A (2.7)

Cs = Qg1 +as2 + ... + 551+ A\

Definition 2.3. The Runge-Kutta methods (2.2), (2.3) has order p if
p is the greatest integer such that

Yni1 — Y(zn +h) = O, as h—0 (2.8)

The difference y,4+1 — y(z, + h) is called the local error.

The order conditions for semi-explicit Runge-Kutta methods with s
stages can be obtained from general order conditions of implicit methods,
which can be found in [2], [8]. For semi-explicit methods of order 2, these

conditions are: .
D bi=1, (2.9)
=1

° 1
§ bic; = ~. 2.1
2 ¢ =5 (2.10)

More precisely, when the order is p = 2 the necessary conditions are the
equations (2.9), (2.10) and (2.7).

Remark 2.4. S.P.N Ngrset and A. Wolfbrandt A,. [11], proved that
the maximum order obtained with an s- stages semi- explicit method, is,p =
s+1..

Definition 2.5. If we apply the Runge-Kutta method defined by
(2.2)4(2.3) or generated by the array (2.4) to the test problem

y' = ay, y(zn) =yn, a €R, (2.11)

then, we obtain
Ynt+1 = R(2)yn, z = ah, (2.12)

where R(z) is a rational function, called the stability function of the
Runge-Kutta method
Remark 2.6. The general expression of R(z) is

R(z) =1+ 2bT (I — zA) e, (2.13)
where [ is the identity matrix of order s and e = (1,1,...,1) € R®.
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Remark 2.7. As we can see, for example in [2], [11], for a semi-explicit
Runge-Kutta method with s stages, the stability function R(z)depends
only on the parameter A and has the particular form

R(z) 1) , (2.14)
where
- RN EAW
[%(w).—-;;;(—l) j!<j> : (2.15)

is the Laguerre’s polynomial and Lgi) (z) is the " derivative of this poly-

nomial.
Definition 2.8. If

|R(z)| <1, for all z <0, (2.16)
then the implicit Runge-Kutta method is called A- stable. If the
method is A-stable and satisfy

lim R(z) =0, (2.17)

|z]—o00
then the method is called L-stable.

3. Semi-explicit methods of order 2 with s = 2 stages

First, we consider the semi-explicit Runge-Kutta schemes of order p = 2
with s = 2 stages which are generated by the simple tableau

We assume that the parameters ci, co, by, bo, Asatisfy the order condi-
tions (2.9), (2.10)and the first two equations from (2.8), i.e.

by + b2 =1,

1
bici + baco = > (3.2)
C1 = )\,

Cco = a1 + A.
Lemma 3.1. The solutions of this system are given by
2c0 — 1 1—2\
YT =) P T 2Ny T T (3:3)
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where A and ¢p are arbitrary distinct real numbers in (0, 1).
Lemma 3.2. For the class of semi - explicit Runge - Kutta methods of
order 2 with s = 2, provided by (3.3), the stability function R(z), is

1+(1—2)\)z+<;—2)\+)\2>22

Rlz) = (1—Az)?

(3.4)

Proof. The conclusion follows from (2.14) for s = 2.

1
Theorem 3.3. The choice A = 1 in (3.3) leads to a subclass of semi
- explicit Runge - Kutta methods of order 2 with s = 2 stages depending

1
on one free parameter co #* e € (0,1). Moreover these methods are

generated by the tableau

0
1
1 (3.5)
1

and have the property of A-stability, that is
|R(2)| <1; for z < 0. (3.6)

1
Proof. To select the value A = v tried to satisfy the inequality (3.6)
with R(z)given by (3.4), for diferent values of A, usind Maple 6 package.

1
For A = 1 the stability function is

11,
1+ -2+ —2
R(z)= —2 16 (3.7)

(-5)
and all semi-explicit Runge-Kutta method generated by (3.5) with ¢y €
(0,1),c0 # i, are A - stable, because R(z) satisfy (3.6).
Remark 3.4. Another important choice of value for Ain (3.3) and (3.4)

2
is A =1 — —, which leads to a subclass of L - stable semi-explicit Runge-

Kutta methods of order 2 with two stages. All members of this subclass
have the stability function

1+ (V2-1)z

1+<\é§1>z]

19

R(z) = (3.8)




which satisfies the inequality (3.6). Moreover, we have (2.17), that is all
these methods are L - stable.
One example of such L-stable methods of order 2 with two stages is

given by
V2 V2
1-¥2 1—72 0\/5
1 1
3 |ty 1-°% (3.9)
0 1

4. Semi-explicit methods of order 2 with s=3 stages

Now, we consider semi-explicit Runge-Kutta methods of order 2 with
three stages (s = 3). These formulas are generated by the tableau

C1 A 0 0
C2 asy A A

. 4.1
c3|az; azx A (4-1)
by by b

The parameters c;, b;, a;;, Ahave to satisfy the equations
bi + by + b3 =1,
1
b101 + b2C2 + bgcg = 5,
e =\ (4.2)
c2 = ag + A,
c3 =as1 +asz + A
Lemma 4.1. The solutions of the system (4.2) are given by
! bi(A—c3) ! bi(A—c2)
5 —¢3—01(A—c3 — S tce2+bi(A—c2
52:2?7 3:2CT’ (4.3)

c1 =M\, a1 =C2— A, az1 =c3 —azz — A,

where A, ca,c3 € (0,1), asy and by are any real numbers, A # c2 # c3.

The proof. is immediate.

Lemma 4.2. The solutions (4.3) of the system (4.2) provide a class of
semi-explicit Runge-Kutta methods of order 2 with s = 3. The stability
function of all these methods is

1 ) o (1 3
1+(1—3)\)Z+ (2—3)\+3)\ >Z + <6_2

(1—Az)?

A+ 322 — )\3) 23
R(z) =

(4.4)
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Proof. The statement follows from (2.14) for s = 3.
1 2 1
Theorem 4.3. The choices A = 5,/\ = g,)\ =5 in (4.4) and (4.3)
provide three subclasses of semi-explicit Runge-Kutta methods of order 2
with s = 3 stages parametrised by ca,c3 € (0,1), ca # c3,a32 and by. All
members of these subclasses satisfy (2.16), that is they are A-stable.

Proof. The conclusion follows by solving the inequality (3.6) for dif-
ferent values of Ain (4.4), using Maple 6 package.

Remark 4.4. The choise A = —leads to a subclass of semi-explicit

Runge-Kutta methods of order 2 having the stability function
1 1 1
1+ -2+ —22— —23
R(z) = 2 12 216 (4.5)

This stability function is considered optimal (see[9]) since A = 1 is the
minimum value of Afor which these methods of order 2 with s = 3 stages
are A-stable.

Example 4.5. We present two examples of methods beloging to these
subclasses

/6| 1/6 0 0 /2112 0 0

/2| 1/3 1/6 0 1/6 | -1/3 1/2 0 L6

s/ 712 0 16 56| 13 o 12 (40
| 3/7 0 4/7 1/2 1/4 1/4

Remark 4.6. Another important choice of value for Ain (4.4) and
(4.3) is A\ = 0.4358665215..., selected to vanish the coefficient of 2%in the
numerator of R(z) in (4.4). This leads to a subclass of semi-explicit Runge-
Kutta methods all having the following stability function

(2) 1 —0.307599564 - z — 0.23766069 - 22
E Z)] =
(1 —0.4358665215 - 2)3

(4.7)

Note that R(z) satisfies (2.16) and also (2.17) that is, all these methods
are L-stable.
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