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1. Introduction

Generally, a fixed point theorem can be applied if the operator
inward his definition domain. So, it is important to establish what condi-
tions are require such that there exists at least one fixed point for nonself
operator. Such conditions was extended in many way. One of them uses
the retraction mapping principle. This technique was presented in [8], [4]
and other paper. The other way uses the continuation principle. In this
paper we replace the inward hypothesis with Lerray - Schauder boundary
condition and using the continuation principle we give an existence result.

First, we recall an abstract continuation principles. Let X and Y be
two sets and the subsets A ⊂ X , respectively B ⊂ Y . Consider a mapping
H : X × [0, 1] → Y and a set A of function from X into [0, 1] which are
constant on A. Suppose that constant function 0 and 1 belong to A. Also,
consider a function ν which is define at least on the following family of
subsets of X {

H (·, a (·))−1 (B) ; a ∈ A
}
∪ ∅.

The nature of the value of ν does not import. Denote

S = {x ∈ X;H (x, λ) ∈ B for some λ ∈ [0, 1]}
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and Hλ = H (·, λ) for each λ ∈ [0, 1].
Theorem 1.1 [5] Suppose that the following condition are satisfied:
(i) for each a ∈ A, there exists a∗ ∈ A such that

a∗ (x) =
{

a (x) for x ∈ S,
0 for x ∈ A,

(ii) the mapping F = H0 satisfies

ν
(
H (·, a (·))−1 (B)

)
= ν

(
F−1 (B)

)
6= ν (∅) , (1)

for any a ∈ A with H (·, a (·)) |A = F |A .
Then, there exists at least one x ∈ X\A a solution to H1 (x) ∈ B. More-
over, F = H1 also satisfies (1) and

ν
(
H−1

1 (B)
)

= ν
(
H−1

0 (B)
)
. (2)

This result can be useful for applications which use methods of fixed
point theory if the function ν : X → {0, 1} is defined by

ν (C) =
{

1 if C 6= ∅,
0 if C = ∅. (3)

Indeed, consider the fixed point problem

T (u) = u

where T : X → X is an operator and X is a set. Assume that Y = X ×X,
B = {(u, u) : u ∈ X} and u0 ∈ X. Let H : X × [0, 1] → X × X be the
mapping define by

H (x, λ) = ((1− λ) u0 + λT (u) , u) .

Then H1 (u) ∈ B is equivalent with T (u) = u. So, the fixed point theorem
is in a form for which it can apply the abstract continuation principle. This
means if we know that the problem H0 (u) ∈ B, u ∈ X has a solution then
the problem H1 (u) ∈ B, u ∈ X has a solution, too.

In the next, for a bounded set U of a real Banach space X we denote
by αk (U) the Kuratowski measure of noncompactness and by cv (U) note
the convex closer of U .

Definition 1.1 Let X be a Banach space and Y ⊂ X be a subset of
X. Assume that the operator T : Y → X is continuous and bounded.

(D1) the operator T is completely continuous if for any bounded
A ∈ Y , the set T (A) is relatively compact in X.
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(D2) if there is a constant q ∈ (0, 1) such that

αk(T (A)) < qαk(A) (4)

for any bounded A ∈ Y , then T is called a (q, αk) - contraction.
(D3) the operator T is said to be αk- condensator if

αk(T (A)) < αk(A) (5)

for any bounded A ∈ Y which is not relatively compact.
(D4) if T is such that

A ⊂ Y countable, not relatively compact implies αk (T (A)) < αk (A)
(6)

then T is called Daher operator;
(D5) let u0 ∈ Y and suppose that T has the following property:

A ∈ Y countable, A ⊂ cv ({u0} ∪ T (A)) implies that A is relatively compact
(7)

then T is a Mönch operator.

2. The Lerray - Schauder Principle for Mönch operator

In this section using the Mönch Fixed Point Theorem we extend
some fixed point theorem for the case when the operator does not inward
his definition domain. Now, we recall the Mönch Fixed Point Theorem.

Theorem 2.1 [3] Let X be a Banach space, Y ⊂ X be a nonempty,
closed and convex subset of X and u0 ∈ Y . Assume that the continuous
operator T : Y → Y has the following property:

A ⊂ Y countable, A ⊂ cv {{u0} ∪ T (A) } implies A is relatively compact.
(8)

Then T has a fixed point in Y .
The main result of this paper is the next theorem

Theorem 2.2. Let X be a Banach space, Y ⊂ X be a closed convex
subset of X and U ⊂ X be an open subset of Y . Let u0 ∈ intU and
consider the operator T : U → Y . Assume that T is Mönch operator and
satisfies the Lerray - Schauder boundary condition

(1− λ) u0 + λT (u) 6= u, (9)

for any u ∈ ∂U and λ ∈ [0, 1]. Then T has a fixed point in U .
Proof: Let

S =
{
u ∈ U : (1− λ) u0 + λT (u) = u for some λ ∈ [0, 1]

}
.
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Hence the sets S and ∂U are closed and S ∩ ∂U = ∅. By Uryshon Lemma
results that there is a function a ∈ C

(
U ; [0, 1]

)
such that

a (u) =
{

0 u ∈ ∂U,
1 u ∈ S.

Now, consider the sets X = U , Y = X×X, A = ∂U , B =
{
(u, u) ∈ Y : u ∈ U

}
and the mapping H : U × [0, 1] → U × U defined by

H (u, λ) = ((1− λ) u0 + λT (u) , u)

and
Γ =

{
a ∈ C

(
U ; [0, 1]

)
: a |∂U= const

}
.

Because of abstract continuation principle we must prove that for any a ∈ Γ
such that

H (·, a (·))|∂U = H0|∂U (10)

there exists a solution for H (u, a (u)) ∈ B. The previous equality from
above is equivalent to

a (u) (T (u)− u0) = 0, for every u ∈ ∂U .

Consider the set K = cv
{
{u0} ∪ T

(
U

)}
and the mapping F : K → K

defined by

F (u) =
{

(1− a (u))u0 + a (u) T (u) , u ∈ U,

u0 , u ∈ K\U.

Hence F (u) = u0 for every u ∈ ∂U , it follows that F is a continuous
operator. Let C ⊂ K, than

C = cv {{u0} ∪ F (C)} ⊂ cv
{
{u0} ∪ F

(
C ∩ U

)}
.

Since T is a Mönch operator, we have C ∩ U compact. Then T
(
C ∩ U

)
is compact and by Mazur Lemma [3], follows that cv

{
{u0} ∪ F

(
C ∩ U

)}
is

compact. Hence C is compact, therefor F is a Mönch operator. By Mönch
fixed point theorem, there exists u ∈ K such that F (u) = u. If u 6= u0

than u ∈ U . Hence
(1− λ) u0 + λT (u) = u (11)

and this is equivalent to u ∈ S. Then the problem H (u, a (u)) ∈ B has a
solution u ∈ S. Now, by abstract continuation principle we can say that
there exists u ∈ U such that T (u) = u �.
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One of the consequences of this theorem is the classical Lerray - Sc-
ahuder Principle:

Theorem 2.3. Let X be a Banach space, Y ⊂ X be a nonempty, closed
convex subset of X and U ⊂ Y be an open, bounded subset of Y . Let
u0 ∈ intU and consider the operator T : U → Y . Assume that T is
completely continuous and

(1− λ) u0 + λT (u) 6= u for any u ∈ ∂U and λ ∈ [0, 1]

Then T has a fixed point in U .
Proof: We must prove that a completely continuous operator is a Mönch
operator. Since T : Y → X is completely continuous results αk (T (A)) = 0
for any A a bounded subset of Y . For any A ⊂ cv {{u0} ∪ T (A)} we have

αk

(
A

)
< αk (cv {{u0} ∪ T (A)}) = αk (T (A)) = 0

Then A is compact �.
The next result is an extension of the Sadovskij fixed point theorem [3]
Theorem 2.4. Let X be a Banach space and Y ⊂ X be a nonempty

closed convex subset of X and U ⊂ Y be an open, bounded subset of Y .
Let u0 ∈ intU and consider the operator T : U → Y . Assume that T is
(q, αk) -contraction and

(1− λ) u0 + λT (u) 6= u for any u ∈ ∂U and λ ∈ [0, 1] .

Then T has a fixed point in U .
Proof: We claim that a (q, αk) -contraction is Mönch operator. Indeed,
for any A ⊂ U such that A ⊂ cv ({u0} ∪ T (A)) we have

αk

(
A

)
< αk (cv {{u0} ∪ T (A)}) = αk (T (A)) < q · αk (A) .

Hence αk (A) (1− q) < 0. This implies q > 1 which is in contradiction
with q ∈ (0, 1). So, αk (A) = 0 �.

The Darbo fixed point theorem [3] is generalize in the next result.
Theorem 2.5. Let X be a Banach space and Y ⊂ X be a nonempty,

closed convex subset of X and U ⊂ Y be an open, bounded subset of Y .
Let u0 ∈ intU and consider the operator T : U → Y . Assume that T is αk

-condensator and

(1− λ) u0 + λT (u) 6= u for any u ∈ ∂U and λ ∈ [0, 1] .

Then T has a fixed point in U .
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Proof: If we show that a αk-condensator is Mönch operator than the
theorem is proved. For any A ⊂ U such that A ⊂ cv ({u0} ∪ T (A)) we
have

αk

(
A

)
< αk (cv {{u0} ∪ T (A)}) < αk (A)

Hence αk (A) = 0, and this is equivalent to assertion that Ā is compact.
An analogue result it can establish for a Daher operators.
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