Bul. Ştiinţ. Univ. Baia Mare, Ser. B. Matematică de la control de la con

Theorem, Let (u_i) be a square in $\mathbb R$ must that $u_i>0$ for all $u\in\mathbb N$. Then following dissertions on equivalent: (1) the series $\sum u_{ij}$ converges, (2) the series $\sum u_{ij}^{\dagger}$ converges for all bounded sequence(v_{ij}) $u\in\mathbb R$: (3) the sames

Dedicated to Costică MUSTATA on his 60th anniversary

ON THE CONVERGENCE OF THE SERIES $\sum a_n^{1+x_n/\log(1+\eta_0)}$

Gergely PATAKI

or all $x \ge y_0$. Hence, since the series $\sum y_0$ and $\sum (1+y)^{-2}$ converge it follows that

Abstract. We show that, for any sequence (a_n) of positive numbers and any bounded sequence (x_n) of real numbers, the series $\sum a_n$ and $\sum a_n^{1-x_n/\log(1+n)}$ either both converge or both diverge.

MSC 1991: 40A05 Keywords: Series, convergence