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Abstract. We use the existence and uniqueness fixed point theorems
for operators of type f : Xn → X to study the existence and uniqueness
of the solution for some integral equations. Also, we will use the fiber
Picard operator technique to obtain derivability results with respect to
some parameter.
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1.Introduction

In this paper we study the integral equation of quadratic type

x (t) = 1 + λ

1
∫

t

x (s) x (s − t) ds, t ∈ [0; 1] . (1)

This equation was presented by M.S. Wertheim, a physicist at the Los
Alamos Scientific Laboratory, as a simplified model of certain equations
arising from Statistical Mechanics and may be considered as a special case
of the Percus-Yevick equation discussed by M.S. Wertheim in [6].

The purpose of this paper is to use the fixed point theorems for op-
erators on cartesian product of metric spaces to prove the existence and
uniqueness of solution for equation (1) in some special invariant sets con-
structed from the properties of the solution. Using the fiber Picard operator
technique we obtain results concerning the continuity and derivability of so-
lution respect to the parameter λ. The advantage of using the fixed point
theorems for operators on cartesian product is the fact that it will be ob-
tained more iterative methods for approximating solution than in the case
of using contraction principle.
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In the last part of the paper we give some generalization of the results
obtained in the first part for the general integral equation

x (t) = g (t) + λ

1
∫

t

K (t, s)x (s) x (s − t) ds, t ∈ [0; 1] . (2)

2. Fixed point theorems

Let X be a nonempty set and A : X → X an operator. We note by:
P (X) := {Y ⊂ X | Y 6= ∅}
FA := {x ∈ X | A(x) = x} - the fixed point set of A.
For x = (x0, x1, . . . , xk−1) ∈ Xk and an operator f : Xk → X, we can

construct the following sequences:

y0 = f (x0, x1, . . . , xk−1) ,

y1 = f (y0, y0, . . . , y0) ,

.................................

yn+1 = f (yn, yn, . . . , yn) ,

(3)

xn+k = f (xn, xn+1, . . . , xn+k−1) (4)

and the following operators:

f̃ : X → X

f̃ (x) = f (x, . . . , x)
(5)

Af : Xk → Xk

(u1, . . . , uk) 7−→ (u2, . . . , uk, f (u1, . . . , uk)) .
(6)

For the sequences (4) and (3) we have

yn+1 = f̃n (y0)

(xn+1, . . . , xn+k) = An
f (x0, x1, . . . , xk−1) .

Definition 2.1 (I.A. Rus [4]). Let (X,d) be a metric space. An operator
A : X → X is (uniformly) Picard operator if there exists x∗ ∈ X such that:

(a) FA = {x∗},
(b) the sequence (An(x))n∈N

converges (uniformly) to x∗, for all x ∈ X.
Definition 2.2 (I.A. Rus [4]). Let (X,d) be a metric space. An

operator A : X → X is (uniformly) weakly Picard operator if:
(a) the sequence (An(x))n∈N

converges (uniformly), for all x ∈ X,

(b) the limit (which may depend on x) is a fixed point of A.
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Theorem 2.1. (M.A. Şerban [5]) Let (X, d) be a complete metric space

and f : Xk → X. Suppose there exist qi ∈ R+, i = 1, k, with α =
k
∑

i=1
qi < 1

such that

d (f (x) , f (y)) ≤
k

∑

i=1

qid (xi, yi)

for any x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Xk. Then:
(a) the operator f̃ : X → X, defined by (5), is a Picard operator, i.e.

Ff = {x∗} ;
(b) the sequence (yn)n∈N

, defined by (3), converges to x∗ and we have
the estimation

d (yn, x∗) ≤ αn+1

1 − α
· max

i=1,k
{d (xi, f (x))} , (7)

for any x = (x1, . . . , xk) ∈ Xk;
(c) the operator Af : Xk → Xk, defined by (6), is a Picard operator,

FAf
= {(x∗, . . . , x∗)} ;

(d) the sequence (xn)n∈N
, defined by (4), converges to x∗ and we have

the estimation

d (xn, x∗) ≤ k · d0 ·
α[n

k ]

1 − α
, (8)

for any x = (x0, . . . , xk−1) ∈ Xk, where d0 = max
i=1,k

{d (xi−1, xi)} .

Theorem 2.2 [Fiber ϕ-contraction theorem] (M.A. Şerban [5]) Let
(Xj , dj), j = 0, p, p ≥ 1, be some metric spaces. Let

Aj : X0 × ... × Xj → Xj , j = 0, p,

be some operators such that:
(i) the spaces (Xj , dj), j = 1, p, are complete metric spaces;
(ii) the operator A0 is (weakly) Picard operator;
(iii) there exist ϕj : R+ → R+ subadditive (c)-comparison functions

such that the operators Aj(x0, ..., xj−1, ·) are ϕj−contractions, j = 1, p;
(iv) the operators Aj are continuous with respect to (x0, ..., xj−1) for

all xj ∈ Xj , j = 1, p.

Then the operator Bp = (A0, ..., Ap) is (weakly) Picard operator. More-
over if A0 is a Picard operator and

FA0
= {x∗

0}, FA1(x∗

0
,·) = {x∗

1}, ..., FAp(x∗

0
,...,x∗

p−1
,·) = {x∗

p}

then
FBp = {(x∗

1, x
∗
2, ..., x

∗
p).
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3. Application to integral equation

We consider the Banach space X = (C ([0; 1] × [0;λ0] , R) , ‖·‖C) of con-
tinuous functions with the uniform norm, where λ0 > 0, and we define the
operator

A : X × X → X

A (x, y) (t, λ) = 1 + λ
2

[

1
∫

t

x (s, λ) y (s − t, λ) ds +
1
∫

t

x (s − t, λ) y (s, λ) ds

]

(9)
Proposition 3.1. Let x ∈ C [0; 1] a solution of equation (1). Then

I (x) =

1
∫

0

x (t) dt

satisfies the quadratic equation

λI2 (x) − 2I (x) + 2 = 0. (10)

Proof. We integrate the equation (1):

I (x) =
1
∫

0

x (t) dt = 1 + λ
1
∫

0

1
∫

t

x (s)x (s − t) dsdt

= 1 + λ
1
∫

0

ds
s
∫

0

x (s) x (s − t) dt = 1 + λ
1
∫

0

x (s)

(

s
∫

0

x (z) dz

)

ds

= 1 + λ
2 ·

(

1
∫

0

x (s) ds

)2

= 1 + λ
2 · I2 (x)

and we obtain the conclusion.�
Remark 3.1.

(a) There are no solutions if λ > 1
2 ;

(b) If λ = 0, we have the trivial solution x (t) ≡ 1;
(c) If x, y ∈ C ([0; 1] × [0;λ0] , R+) then A (x, y) ≥ 1.

Since I (x) satisfies the quadratic equation (10) then

I (x) = I1,2 =
1 −

√
1 − 2λ

λ

and this lead us to consider the following sets:

Yi = {x ∈ X : x (t, λ) ≥ 1, ∀ (t, λ) ∈ [0; 1] × [0;λ0] ,
I (x) = Ii, for λ 6= 0, x (t, 0) = 1, ∀t ∈ [0; 1]} (11)
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for i = 1, 2.
Proposition 3.2 The sets Yi, i = 1, 2, defined by (11), are invariant

sets for operator A, defined by (9).
Proof. Let x, y ∈ Yi. It is obvious that A (x, y) (t, λ) ≥ 1, ∀ (t, λ) ∈
[0; 1] × [0;λ0] and A (x, y) (t, 0) = 1, ∀t ∈ [0; 1]. For λ 6= 0, we have:

1
∫

0

A (x, y) (t, λ) dt = 1 + λ
2 ·

[

1
∫

0

1
∫

t

x (s, λ) y (s − t, λ) dsdt +
1
∫

0

1
∫

t

y (s, λ)x (s − t, λ) dsdt

]

=

= 1 + λ
2 ·

[

1
∫

0

ds
s
∫

0

x (s, λ) y (s − t, λ) dt +
1
∫

0

ds
s
∫

0

y (s, λ)x (s − t, λ) dt+

]

=

= 1 + λ
2 ·

[

1
∫

0

x (s, λ)

(

s
∫

0

x (z, λ) dz

)

ds +
1
∫

0

y (s, λ)

(

s
∫

0

y (z, λ) dz

)

ds

]

=

= 1 + λ
2 · I (x) · I (y) =

= 1 + λ
2 · I2

i = Ii

which proves the conclusion.�
Theorem 3.1. If 0 < λ0 < 3

8 then:
(a) There is a unique x∗ ∈ C([0; 1], R+) solution of equation (1) such

that
∫ 1

0
x∗(t)dt = I1

for λ ∈ [0;λ0] fixed;
(b) for any x0, x1 ∈ Y1 the sequence (yn)n∈N

y0 = A (x0, x1) ,

y1 = A (y0, y0) ,

.....................

yn+1 = A (yn, yn) ,

converges uniformly to x∗ and we have the estimation

‖yn − x∗‖ ≤ αn+1

1 − α
· max {‖x0 − x1‖ , ‖x1 − A (x0, x1)‖} ,

where α = 2
(

1 −
√

1 − 2λ0

)

;
(c) for any x0, x1 ∈ Y1 the sequence (xn)n∈N

xn+2 = A (xn, xn+1)

converges uniformly to x∗ and we have the estimation

‖xn − x∗‖ ≤ α[n
2
]

1 − α
· max {‖x0 − x1‖ , ‖x1 − A (x0, x1)‖} ,
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for the same α;
(d) x∗ ∈ C1 ([0; 1] × [0;λ0]) .

Proof. From Proposition 3.2 we have that A : Y1 × Y1 → Y1. The set Y1

is a closed set in a Banach space which means that is a complete metric
space. For x = (x1, x2), y = (y1, y2) ∈ Y1 × Y1 we have

‖A (x1, x2) − A (y1, y2)‖ ≤ λ · I1 · [‖x1 − y1‖ + ‖x2 − y2‖] ≤
≤ α

2 · [‖x1 − y1‖ + ‖x2 − y2‖]

which prove the conditions of Theorem 2.1 and therefore we obtain (a)-(c).
To prove (d) we will use the Fiber ϕ-contraction Theorem. We consider

the sets X0 = Y1, X1 = X and operators:

A0 : X0 → X0

A0 (x) (t, λ) = 1 + λ
1
∫

t

x (s, λ)x (s − t, λ) ds

which is a Picard operator since A0 = Ã, defined as in (5), FA0
= {x∗}.

The second operator is obtained by formally derivating of operator A0 with
respect to λ

A1 : X0 × X1 → X1

A1 (x, y) (t, λ) =
1
∫

t

x (s, λ)x (s − t, λ) ds + λ

[

1
∫

t

x (s, λ) y (s − t, λ) ds +
1
∫

t

y (s, λ) x (s − t, λ) ds

]

.

For any x ∈ X0 and y1, y2 ∈ X1 we have

‖A1 (x, y1) − A1 (x, y2)‖ ≤ 2λ · I1 · ‖y1 − y2‖ ≤
≤ α · ‖y1 − y2‖

which shows that A1 (x, ·) is a ϕ-contraction with ϕ (t) = αt. From Fiber

ϕ-contraction Theorem we deduce that the operator

B1 : X0 × X1 → X0 × X1

B1 = (A0, A1)

is a Picard operator and FB1
= {(x∗, y∗)}, where {y∗} = FA1(x∗,·). This

means that the sequences

xn+1 = A0 (xn)

yn+1 = A1 (xn, yn)

converge uniformly, xn ⇉ x∗, respectively yn ⇉ y∗, for any starting point
(x0, y0) ∈ X0 × X1. We remark if we take y0 = ∂x0

∂λ
then yn = ∂xn

∂λ
for all

n ∈ N. These imply that y∗ = ∂x∗

∂λ
.
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To prove that there exists ∂x∗

∂t
and ∂x∗

∂t
∈ C ([0; 1] × [0;λ0]) we will use

the same technique and in this case we consider the operator

A1 : X0 × X1 → X1

A1 (x, y) (t, λ) = −λx (t, λ)x (0, λ) − λ
1
∫

t

x (s, λ) y (s − t, λ) ds.

The proof is complete.�

4. Generalization

In this section of the paper we will extend the results obtained in pre-
vious section to the integral equation

x (t) = g (t) + λ

1
∫

t

K (t, s)x (s) x (s − t) ds, t ∈ [0; 1] .

Suppose that the following assumptions hold:

(H1) g ∈ C([0; 1], R+);

(H2) K ∈ C([0; 1] × [0; 1], R);

(H3) 0 ≤ K(t, s) ≤ 1,∀t, s ∈ [0; 1].

Proposition 4.1 Let x ∈ C [0; 1] a solution of equation (2). Then

I (x) =

1
∫

0

x (t) dt

satisfies the inequation

λI2 (x) − 2I (x) + 2G ≥ 0, (12)

where G =
1
∫

0

g (t) dt.

Proof. We integrate the equation (2):

I (x) =
1
∫

0

x (t) dt =
1
∫

0

g (t) dt + λ
1
∫

0

1
∫

t

K (t, s)x (s)x (s − t) dsdt ≤

≤ G + λ
1
∫

0

ds
s
∫

0

x (s)x (s − t) dt = G + λ
1
∫

0

x (s)

(

s
∫

0

x (z) dz

)

ds =

= G + λ
2 ·

(

1
∫

0

x (s) ds

)2

= G + λ
2 · I2 (x)
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and we obtain the conclusion.�
Remark 4.1

(a) If λ > 1
2G

then inequality (12) is always satisfied for any I (x) ;
(b) If λ = 0, we have the trivial solution x (t) ≡ g (t) ;
(c) If x, y ∈ C ([0; 1] × [0;λ0] , R+) then A (x, y) ≥ g (t) .

Since I (x) satisfies the inequation (12) then

I (x) ∈ (−∞; I1] ∪ [I2; +∞)

where I1,2 = 1−
√

1−2Gλ
λ

. We are interested to find the positive solution of
integral equation (2), this lead us to consider the following set:

Y1 = {x ∈ X : x (t, λ) ≥ mg, ∀ (t, λ) ∈ [0; 1] × [0;λ0] ,
I (x) ≤ I1, for λ 6= 0, x (t, 0) = g (t) , ∀t ∈ [0; 1]}

and the operator

A : X × X → X

A (x, y) (t, λ) = g (t) + λ
2

[

1
∫

t

K (t, s)x (s, λ) y (s − t, λ) ds +
1
∫

t

K (t, s)x (s − t, λ) y (s, λ) ds

]

.

Theorem 4.1 If 0 < λ0 < 3
8G

then:
(a) There is a unique x∗ ∈ C([0; 1], R+) solution of equation (2) such

that
∫ 1

0
x∗(t)dt ≤ I1

for λ ∈ [0;λ0] fixed;
(b) for any x0, x1 ∈ Y1 the sequence (yn)n∈N

y0 = A (x0, x1) ,

y1 = A (y0, y0) ,

.....................

yn+1 = A (yn, yn) ,

converges uniformly to x∗ and we have the estimation

‖yn − x∗‖ ≤ αn+1

1 − α
· max {‖x0 − x1‖ , ‖x1 − A (x0, x1)‖} ,

where α = 2
(

1 −
√

1 − 2λ0G
)

;
(c) for any x0, x1 ∈ Y1 the sequence (xn)n∈N

xn+2 = A (xn, xn+1)
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converges uniformly to x∗ and we have the estimation

‖xn − x∗‖ ≤ α[n
2
]

1 − α
· max {‖x0 − x1‖ , ‖x1 − A (x0, x1)‖} ,

for the same α;
(d) If g ∈ C1([0; 1], R+) and ∂K

∂t
∈ C([0; 1], R) then x∗ ∈ C1 ([0; 1] × [0;λ0]) .

Proof. It is easy to check that A (Y1, Y1) ⊆ Y1. The set Y1 is a closed
set in a Banach space which means that is a complete metric space. For
x = (x1, x2), y = (y1, y2) ∈ Y1 × Y1 we have

‖A (x1, x2) − A (y1, y2)‖ ≤ λ · I1 · [‖x1 − y1‖ + ‖x2 − y2‖] ≤
≤ α

2 · [‖x1 − y1‖ + ‖x2 − y2‖]

which prove the conditions of Theorem 2.1 and therefore we obtain (a)-(c).
To prove (d) we will use the Fiber ϕ-contraction Theorem. We consider

the sets X0 = Y1, X1 = X and operators:

A0 : X0 → X0

A0 (x) (t, λ) = g (t) + λ
1
∫

t

K (t, s)x (s, λ)x (s − t, λ) ds

which is a Picard operator since A0 = Ã, defined as in (5), FA0
= {x∗}.

The second operator is obtained by formally derivating of operator A0 with
respect to λ

A1 : X0 × X1 → X1

A1 (x, y) (t, λ) =
1
∫

t

K (t, s)x (s, λ)x (s − t, λ) ds + λ ·
[

1
∫

t

K (t, s)x (s, λ) y (s − t, λ) ds+

1
∫

t

K (t, s) y (s, λ)x (s − t, λ) ds

]

For any x ∈ X0 and y1, y2 ∈ X1 we have

‖A1 (x, y1) − A1 (x, y2)‖ ≤ 2λ · I1 · ‖y1 − y2‖ ≤
≤ α · ‖y1 − y2‖

which shows that A1 (x, ·) is a ϕ-contraction with ϕ (t) = αt. From Fiber

ϕ-contraction Theorem we deduce that the operator

B1 : X0 × X1 → X0 × X1

B1 = (A0, A1)

is a Picard operator and FB1
= {(x∗, y∗)}, where {y∗} = FA1(x∗,·). There-

fore using the same technique as in Theorem 3.1 we prove that y∗ = ∂x∗

∂λ
.
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To prove that there exists ∂x∗

∂t
and ∂x∗

∂t
∈ C ([0; 1] × [0;λ0]) we will use

the similar way and in this case we consider the operator

A1 : X0 × X1 → X1

A1 (x, y) (t, λ) = g′ (t) − λK (t, t)x (t, λ)x (0, λ)+

+λ

[

1
∫

t

∂K
∂t

(t, s)x (s, λ)x (s − t, λ) ds +
1
∫

t

K (t, s)x (s, λ) x (s − t, λ) ds

]

.

The proof is complete.�
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[5] M.A. Şerban, The fixed point theory for the operators on cartesian

product, (Romanian), Cluj University Press, Cluj-Napoca, 2002.
[6] M.S. Wertheim, Analytic solutions of the Percus-Yevick equation, J.

Math. Phys., 5(1964).

Received: 7.09.2002

Department of Applied Mathematics
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